Movimento uniformemente variado (MUV)x(II)
Borges e Nicolau
Movimentos com velocidade escalar variável no decurso do tempo são comuns e neles existe aceleração escalar, podendo a velocidade aumentar em módulo (movimento acelerado) ou diminuir em módulo (movimento retardado).
Quando a aceleração escalar α é constante e não nula o movimento é chamado de uniformemente variado (MUV).
α = αm = Δv/Δt ≠ 0
Função horária da velocidade escalar
Da expressão α = Δv/Δt, obtemos: α = (v-v0)/(t-0)
v = v0 + α.t
Onde: v0 = velocidade inicial, velocidade do móvel no início da contagem dos tempos. (t = 0)
Função horária dos espaços
s = s0 + v0.t + (α.t2)/2
Equação de Torricelli
v2 = (v0)2 + 2.α.Δs
Propriedade do MUV
vm = Δs/Δt = (v1+v2)/2
Exercícios básicos
xExercício 1:
Renato Pé Murcho
Nos anos finais da década de 1970 surgiu no Guarani de Campinas um jogador muito talentoso chamado Renato. Atuava como meia armador e, tendo a seu lado o centroavante Careca, compôs um ataque arrasador que levou o Guarani ao título nacional.
Depois da conquista histórica Renato e Careca tiveram seus passes negociados, passando a defender o São Paulo. Com atuações brilhantes no tricolor foram convocados para a seleção brasileira de 1982, que disputou a Copa do Mundo na Espanha e que muitos consideram a melhor de todos os tempos, apesar da tragédia de Sarriá, quando o Brasil perdeu da Itália por 3 a 2 e ficou fora da competição.
Renato tinha o apelido de “Pé murcho”, o que nos leva a imaginar que os arremates não eram o seu forte. Em um jogo do São Paulo contra o Internacional de Porto Alegre, Renato chutou uma bola parada da meia lua da área em direção ao gol adversário. O goleiro fez a defesa e a Rede Globo informou com dados obtidos em seu novíssimo computador:
A bola viajou 15 metros, praticamente em linha reta, com aceleração escalar constante, tendo permanecido no ar durante 2 segundos. Imediatamente após o chute a velocidade da bola era de 10 m/s.
No momento em que os dados sobre a velocidade final e a aceleração escalar da bola seriam colocados no ar, houve uma pane elétrica nas cabines da imprensa.
Você faria a gentileza calcular os dados faltantes para que Galvão Bueno possa informar à galera?
Resolução: clique aqui
Exercício 2:
Um ciclista em movimento retilíneo e uniformemente variado passa pela origem O de sua trajetória com velocidade escalar +10 m/s e aceleração escalar -0,2 m/s2. Qual é a máxima distância do ciclista à origem O?
Resolução: clique aqui
Exercício 3:
Um móvel realiza um movimento retilíneo e uniformemente variado cuja função horária é, em unidades do SI, s = 5 + 8.t – 2.t2.
Determine, entre os instantes t1 = 1 s e t2 = 3 s, a variação de espaço e a distância efetivamente percorrida pelo móvel.
Resolução: clique aqui
Exercício 4:
A velocidade escalar de uma moto varia de 15 m/s a 5 m/s, após percorrer uma distância de 100 m em movimento uniformemente variado. Qual é a aceleração escalar da moto?
Resolução: clique aqui
Exercício 5:
Um trem de 200 m de comprimento inicia a travessia de uma ponte de 100 m com velocidade escalar de 10 m/s e completa a travessia com velocidade escalar de
5 m/s. Considerando o movimento do trem uniformemente variado, determine o intervalo de tempo que dura a travessia.
Resolução: clique aqui
Exercícios de revisão
Revisão/Ex 1:
(Olimpíada Paulista de Física)
Um motorista está viajando de carro em uma estrada, a uma velocidade constante de 90 km/h, quando percebe um cavalo à sua frente e resolve frear, imprimindo uma desaceleração constante de 18 km/h por segundo. calcule:
a) a distância mínima de frenagem, em metros;
b) o tempo decorrido entre o instante da frenagem e a parada do carro, em segundos.
Resolução: clique aqui
Revisão/Ex 2:
(UFSCAR-SP)
Uma partícula se move em linha reta com aceleração constante. Sabe-se que no intervalo de tempo de 10 s ela passa duas vezes pelo mesmo ponto dessa reta, com velocidade de mesmo módulo, v = 4,0 m/s, em sentidos opostos. A variação de espaço e a distância efetivamente percorrida pela partícula nesse intervalo de tempo são, respectivamente,
a) 0,0 m e 10 m
b) 0,0 m e 20 m
c) 10 m e 5,0 m
d) 10 m e 10 m
Resolução: clique aqui
Revisão/Ex 3:
(Cesgranrio-RJ)
Um automóvel, partindo do repouso, leva 5,0 s para percorrer 25 m em movimento uniformemente variado. A velocidade final do automóvel é de:
a) 5,0 m/s
b) 10 m/s
c) 15 m/s
d) 20 m/s
e) 25 m/s
Resolução: clique aqui
Revisão/Ex 4:
(FUVEST-SP)
Um carro viaja com velocidade escalar de 90 km/h (ou seja, 25 m/s) num trecho retilíneo de uma rodovia quando, subitamente, o motorista ve um animal parado na pista. Entre o instante em que o motorista avista o animal e aquele em que começa a frear, o carro percorre 15 m. Se o motorista frear o carro à taxa constante de 5,0 m/s2, mantendo-o em sua trajetória retilínea, ele só evitará atingir o animal, que permanece imóvel durante todo o tempo, se o tiver percebido a uma distância de, no mínimo,
a) 15 m
b) 31,25 m
c) 52,5 m
d) 77,5 m
Resolução: clique aqui
Revisão/Ex 5:
(UF-ES)
Um objeto A encontra-se parado, quando por ele passa um objeto B, com velocidade constante de módulo igual a 8,0 m/s. No instante da ultrapassagem imprime-se ao objeto A uma aceleração constante, na mesma direção e sentido da velocidade de B. Os objetos A e B descrevem uma mesma trajetória retilínea. O módulo da velocidade do objeto A, no instante em que ele alcança o objeto B, vale:
a) 4,0 m/s
b) 8,0 m/s
c) 16 m/s
d) 32 m/s
e) 64 m/s
Resolução: clique aqui
parabens professor ! material muito bom. valeuu mesmo.
ResponderExcluiruma forma de resolver um automóvel e avistado com 7 m/s para calcula sua velocidade apos 8 s sabendo que o mesmo possuia aceleracao de 15 m/s2
ResponderExcluiruma forma de resolver um automóvel e avistado com 7 m/s para calcula sua velocidade apos 8 s sabendo que o mesmo possuia aceleracao de 15 m/s2
ResponderExcluir