terça-feira, 27 de setembro de 2016

Cursos do Blog - Termologia, Óptica e Ondas

A refração da luz faz os azulejos imersos na água parecerem mais curtos.

28ª aula
Refração da luz. Índice de refração absoluto. Lei de Snell-Descartes.

Borges e Nicolau

Refração da luz

A refração da luz consiste na passagem da luz de um meio para outro acompanhada de variação em sua velocidade de propagação. A refração pode ocorrer com ou sem desvio. Veja a figura:


 Refração da luz ao atravessar um prisma e um conjunto de lâminas de faces paralelas

Índice de refração absoluto de um meio para uma dada luz monocromática

Seja c a velocidade de propagação da luz no vácuo e v a velocidade de propagação de uma dada luz monocromática num determinado meio. A comparação entre c e v define a grandeza n, índice de refração:


Observações:

a) n é uma grandeza adimensional
b) Para os meios materiais, sendo c > v, resulta n > 1
c) Para o vácuo n = 1
d) Para o ar n 1
e) Para um determinado meio material, temos para as diversas luzes monocromáticas:


Lei de Snell-Descartes

Observe a figura:


A lei de Snell-Descartes afirma que: é constante, na refração, o produto do índice de refração do meio pelo seno do ângulo que o raio forma com a normal à superfície de separação, neste meio.
Isto é:


Se n2 for maior do que n1, dizemos que o meio 2 é mais refringente do que o meio 1, resulta da lei de Snell-Descartes que sen r < sen i e, portanto, r < i.  
Isto significa que: no meio mais refringente o raio de luz fica mais próximo da normal.

Animação:
Clique aqui

Exercícios Básicos

Exercício 1:
O índice de refração absoluta de um meio é igual a 1,5. Qual é a velocidade de propagação da luz nesse meio? A velocidade de propagação da luz no vácuo é igual a 3,0.108 m/s.

Resolução: clique aqui

Exercício 2:
A velocidade de propagação da luz num determinado meio é 2 vezes menor do que a velocidade de propagação da luz no vácuo. Qual é o índice de refração absoluto deste meio?

Resolução: clique aqui

Exercício 3:
Um raio de luz propagando-se no ar incide na superfície de um líquido contido num recipiente. O índice de refração absoluto do ar é 1 e do líquido é3. Sabendo-se que o ângulo de incidência é 60º, determine o ângulo de refração r. 
Dados: sen 30º = 0,5; sen 60º = 3/2

Resolução: clique aqui

Exercício 4:
Um raio de luz propagando-se no ar incide na superfície de um bloco de vidro. O ângulo de incidência é de 45º e ao passar para o vidro o raio de luz sofre um desvio de 15º. Sendo o índice de refração do ar igual a 1,0, qual é o índice de refração do vidro?

Resolução: clique aqui

Exercício 5:
Observe nas figuras abaixo um raio de luz sofrendo refração. Indique em cada situação qual meio tem índice de refração maior.


Resolução:  clique aqui

Exercícios de Revisão

Revisão/Ex 1:
(Inatel-MG)
O módulo da velocidade da propagação da luz num determinado meio é 4/5 do módulo da velocidade de propagação da luz no vácuo. Então, o índice de refração absoluto do meio vale:

a) 0,80     b) 1,25     c) 1,80     d) 2,05     e) 2,25


Resolução: clique aqui

Revisão/Ex 2:
(Mackenzie-SP)
Um feixe luminoso monocromático atravessa um determinado meio homogêneo, transparente e isótropo, com velocidade de 2,4.
108 m/s. Considerando a velocidade da luz na vácuo c = 3,0.108 m/s, o índice de refração absoluto deste meio é:

a) 1,25 m/s.
b) 1,25.
c) 0,8 m/s.
d) 0,8.
e) 7,2.
1016 m/s.

Resolução: clique aqui

Revisão/Ex 3:
(UFRGS)
A figura representa um raio de luz monocromática que se refrata na superfície plana de separação de dois meios transparentes, cujos índices de refração são n
1 e n2. Com base nas medidas expressas na figura, onde C é uma circunferência, pode-se calcular a razão n2/n1  dos índices de refração desses meios. Qual das alternativas apresenta corretamente o valor dessa razão?



a) 2/3.
b) 3/4.
c) 1.
d) 4/3.
e) 3/2.


Resolução: clique aqui

Revisão/Ex 4:
(FEI-SP)
Um raio de luz propaga-se no ar e atinge um meio X. Para um ângulo de incidência de 60°, o ângulo de refração correspondente é de 30°.

Dados: sen 30° = 1/2; sen 60° = 3/2.

O índice de refração absoluto do meio X vale:

a) 3
3
b) 23
c)
3 
d)
2
e) 1


Resolução: clique aqui

Revisão/Ex 5:
(UFU-MG)
Um tanque cilíndrico e opaco, com a superfície superior aberta, tem um diâmetro de 3,0 m e está completamente cheio de um líquido de índice de refração igual a 1,5 como mostra figura abaixo. Ao entardecer, a luz do sol forma um ângulo de 30º com a linha do horizonte. A partir desse instante, a luz do sol deixa de iluminar o fundo do tanque.




Considere o índice de refração do ar igual a 1,0.
Com base nessas informações e nos dados apresentados, encontre a altura D do tanque.


Resolução: clique aqui
b
Desafio:
 

Um bloco de material transparente tem índice de refração √3. Um raio de luz propagando-se no ar (índice de refração absoluto igual a 1,0) incide no bloco com um ângulo de incidência igual a i. Qual é o valor de i, sabendo-se que o raio refletido é perpendicular ao raio refratado?

A resolução será publicada na próxima terça-feira

Resolução do desafio anterior:

Um retângulo de 6,0 cm x 10 cm é colocado diante de um espelho esférico de Gauss, de distância focal f = 10 cm, conforme a figura. 



A imagem do retângulo é um:

a) quadrado de área 60 cm2
b) retângulo de área 60
cm2
c) trapézio de área aproximadamente igual a 60
cm2
d) quadrado de área aproximadamente igual a 60
cm2
e) trapézio de área aproximadamente igual a 107
cm2


Resolução:
 



Objeto AE

1/f = 1/p + 1/p'
1/10 = 1/25 + 1/p'1 => p'1 = 50/3 cm
i1/0 = -p'1/p
i1/6 = (-50/3)/25 => i1 = -4 cm

Objeto BD

1/f = 1/p + 1/p'
1/10 = 1/15 + 1/p'2 => p'2 = 30 cm
i2/0 = -p'2/p
i2/6 = 30/25 => i2 = -12 cm

Área do trapézio

A = (base menor + base maior)/2.altura
A = [(4+12)/2].[30-(50/3)]
A = 8.40/3
A ≅ 107 cm2

Resposta: e

segunda-feira, 26 de setembro de 2016

Cursos do Blog - Mecânica

Globo da Morte

 28ª aula
Forças em trajetórias curvilíneas. Novos exercícios

Borges e Nicolau 

Resumo: 

Quando um corpo descreve um movimento circular uniforme sua aceleração é centrípeta (acp), com intensidade dada por  acp = v2/R , onde v é a velocidade escalar e R o raio da trajetória.

Pela segunda lei de Newton a resultante das forças que agem no corpo, chamada resultante centrípeta (Fcp = m.acp), é responsável pela trajetória circular que o corpo descreve. Fcp e acp têm direção perpendicular à velocidade vetorial do corpo, em cada instante e sentido para o centro da trajetória.


Exemplos:

1) Um pequeno bloco preso a um fio descreve em uma mesa, perfeitamente lisa, um movimento circular uniforme. As forças que agem no bloco são: o peso P, a força normal FN e a força de tração T. O peso e a força normal se equilibram. A resultante é a força de tração. Ela é a resultante centrípeta.


2) Num pêndulo cônico uma pequena esfera, presa a um fio, descreve uma trajetória circular num plano horizontal. As forças que agem na esfera são: o peso P e a força de tração T. A resultante P + T é a resultante centrípeta.  


Se o movimento curvilíneo for variado a força resultante apresenta duas componentes, uma centrípeta (responsável pela variação da direção da velocidade) e outra tangencial (responsável pela variação do módulo da velocidade). Veja o exemplo: uma pequena esfera presa a um fio oscila num plano vertical (pêndulo simples). Observe a esfera ao passar pela posição C. As forças que nela agem são o peso P e a força de tração T. Vamos decompor o peso nas componentes Pt e Pn.
O módulo da resultante centrípeta é T - Pn e o módulo da resultante tangencial é Pt.


Animações: 
Clique aqui e aqui

Exercícios básicos 

Exercício 1: 
Um motociclista com sua moto descreve uma trajetória circular de raio R, num plano vertical, no interior de um globo da morte. O motociclista realiza a volta completa, sem descolar do piso. Prove que, nestas condições, a velocidade mínima do motociclista no ponto mais alto da trajetória é dada por 
onde g é a aceleração local da gravidade.

                                      
Resolução: clique aqui

Exercício 2:
Um carro de massa m entra numa curva de raio R de uma  estrada horizontal. O coeficiente de atrito estático entre a pista e os pneus é igual a μ. Prove que a máxima velocidade com que o carro pode fazer a curva, sem o perigo de derrapar, é dada por
onde g é a aceleração local da gravidade.



Resolução: clique aqui

Exercício 3:
Um automóvel percorre uma pista curva sobrelevada, isto é, a curva apresenta a margem externa mais elevada do que a margem interna. Seja θ o ângulo de sobrelevação, tal que tg θ = 0,15. Com que velocidade escalar o automóvel deve efetuar a curva, independentemente da força de atrito entre os pneus e a pista? É dada a aceleração da gravidade g =10 m/s2 e o raio da trajetória R = 150 m.

Clique para ampliar
  
Resolução: clique aqui

Exercício 4:
Um avião realiza um movimento circular uniforme de raio R = 120 m e com velocidade escalar v = 40 m/s. F é a força de sustentação e P é o peso do avião. Determine a intensidade da força F em função da massa m do avião. Considere 
g = 10 m/s2.


Resolução: clique aqui

Exercício 5:
O rotor é um cilindro oco que pode girar em torno de seu eixo. Uma pessoa está encostada na parede interna do cilindro, conforme mostra a figura. O cilindro começa a girar e a pessoa gira junto como se ficasse "grudada" no cilindro. Quando atinge uma velocidade angular mínima ωmin o piso é retirado e a pessoa não cai. Seja R o raio do cilindro, g a aceleração local da gravidade e μ o coeficiente de atrito estático entre a roupa da pessoa e a parede do cilindro. 

x
a) Represente as forças que agem na pessoa: o peso P e as componentes Fat (força de atrito) e FN (força normal).
b) Prove que

Resolução: clique aqui
 
Exercícios de Revisão

Revisão/Ex 1:
(VUNESP)
Curvas com ligeiras inclinações em circuitos automobilísticos são indicadas para aumentar a segurança do carro a altas velocidades, como, por exemplo, no Talladega Superspeedway, um circuito utilizado para corridas promovidas pela NASCAR (National Association for Stock Car Auto Racing). Considere um carro como sendo um ponto material percorrendo uma pista circular, de centro C, inclinada de um ângulo
α e com raio R, constantes, como mostra a figura, que apresenta a frente do carro em um dos trechos da pista.



Se a velocidade do carro tem módulo constante, é correto afirmar que o carro

a) não possui aceleração vetorial.
b) possui aceleração com módulo variável, direção radial e no sentido

para o ponto C.
c) possui aceleração com módulo variável e tangente à trajetória circular.
d) possui aceleração com módulo constante, direção radial e no sentido

para o ponto C.
e) possui aceleração com módulo constante e tangente à trajetória circular.


Resolução: clique aqui

Revisão/Ex 2:
(FGV)
Em um dia muito chuvoso, um automóvel, de massa m, trafega por um trecho horizontal e circular de raio R. Prevendo situações como essa, em que o atrito dos pneus com a pista praticamente desaparece, a pista é construída com uma sobre-elevação externa de um ângulo
α, como mostra a figura. A aceleração da gravidade no local é g.



A máxima velocidade que o automóvel, tido como ponto material, poderá desenvolver nesse trecho, considerando ausência total de atrito, sem derrapar, é dada por


a)
(m.g.R.tg α)
b)
(m.g.R.cos α)
c)
(g.R.tg α)
d)
(g.R.cos α)
e)
(g.R.sen α)

Resolução: clique aqui

Revisão/Ex 3:
(PUC-Campinas)
Num trecho retilíneo de uma pista de automobilismo há uma lombada cujo raio de curvatura é de 50 m. Um carro passa pelo ponto mais alto da elevação com velocidade v, de forma que a interação entre o veículo e o solo (peso aparente) é m.g/5 neste ponto. Adote g = 10 m/
s2.
Nestas condições, em m/s, o valor de v é

a) 10
b) 20
c) 30
d) 40
e) 50


Resolução: clique aqui

Revisão/Ex 4:
(UPE)
Um coelho está cochilando em um carrossel parado, a uma distância de 5 m do centro. O carrossel é ligado repentinamente e logo atinge a velocidade normal de funcionamento na qual completa uma volta a cada 6 s. Nessas condições, o coeficiente de atrito estático mínimo entre o coelho e o carrossel, para que o coelho permaneça no mesmo lugar sem escorregar, vale:
Considere
π = 3 e g = 10 m/s2.

a) 0,2
b) 0,5
c) 0,4
d) 0,6
e) 0,7


Resolução: clique aqui

Revisão/Ex 5:
(Fuvest-SP)
Um caminhão, com massa total de 10000 kg, está percorrendo uma curva circular plana e horizontal a 72 km/h (ou seja, 20 m/s) quando encontra uma mancha de óleo na pista e perde completamente a aderência. O caminhão encosta então no muro lateral que acompanha a curva e que o mantém em trajetória circular de raio igual a 90 m. O coeficiente de atrito entre o caminhão e o muro vale 0,3. Podemos afirmar que, ao encostar no muro, o caminhão começa a perder velocidade à razão de, aproximadamente:

a) 0,07 m.
s-2.
b) 1,3 m.
s-2.
c) 3,0 m.
s-2.
d) 10 m.
s-2.
e) 67 m.
s-2.

Resolução: clique aqui
c
Desafio:

Um disco gira em torno de seu eixo vertical, com velocidade angular ω = 5,0 rad/s. Um estudante coloca sobre o disco uma moeda, a uma distância r do eixo de rotação. Sendo g = 10 m/s2, R = 25 cm o raio do disco, m = 7,0 g a massa da moeda exμx=x0,50 o coeficiente de atrito estático entre a moeda e o disco, pode-se afirmar que:

I) Se r = 10 cm a moeda não escorrega, mas fica na iminência de escorregar.
II) Se r = 20 cm a moeda não escorrega, mas fica na iminência de escorregar.
III) Se r = 25 cm a moeda escorrega.

São corretas:

a) I e II
b) II e III
c) I, II e III
d) I e III
e) Somente I



A resolução será publicada na próxima segunda-feira.

Resolução do desafio anterior:

Uma partícula de massa m = 1,0 kg realiza um movimento circular de raio 
R = 1,0 m. Ao passar pelo ponto A as forças que agem na partícula estão indicadas na figura e suas intensidades são: 
F1 = 12 N; F2 = 15 N e F3 = 20 N.




Sendo sen α = 0,60 e sen β = 0,80, calcule o módulo da velocidade da partícula no ponto A.

 
Resolução:

Vamos indicar por Fresult a intensidade da resultante centrípeta.

F
result = F1 + F2.cos α + F3.cos β 
Fresult = 12 + 15.0,80 + 20.0,60 
Fresult = 36 N 
Fresult = m.v2/R => 36 = 1,0.v2/1,0 => v = 6,0 m/s

Resposta: v = 6,0 m/s