segunda-feira, 25 de maio de 2015

Cursos do Blog - Mecânica


16ª aula
Lançamento horizontal

Borges e Nicolau

Considere um móvel P lançado horizontalmente nas proximidades da superfície terrestre. Vamos desprezar a resistência do ar. O movimento de P pode ser considerado como a composição de dois movimentos, um horizontal (Px) e outro vertical (Py).

 Clique para ampliar

Movimento vertical: Queda livre
y = g.t2/2
vy = g.t2
x
Movimento horizontal: Uniforme com velocidade v0
x = v0.t2
x
Cálculo do tempo de queda tq:
t2= tq quando y = h => h = g.(tq)2/2 => tq = (2.h/g)
x
Cálculo do alcance D:
X = D quando t2= tq => D = v0.tq


Exercícios básicos

Exercício 1:
Uma bolinha é lançada horizontalmente com velocidade v0 = 8 m/s, de um local situado a uma altura h = 20 m do solo. 


Determine:
a) o intervalo de tempo decorrido desde o lançamento até a bolinha atingir o solo (tempo de queda);
b) a distância D entre o ponto em que a bolinha atinge o solo e a vertical de lançamento (alcance);
c) As componentes
vx e vy da velocidade da bolinha no instante em que atinge o solo e o módulo v da velocidade resultante.
Despreze a resistência do ar e considere g = 10 m/s2.


Resolução: clique aqui

Exercício 2:
Uma pedrinha A é abandonada (v0A = 0) de um ponto situado a uma altura h do solo. No mesmo instante, outra pedrinha B é lançada horizontalmente , da mesma altura h e com velocidade v0B. Sejam TA e TB os instantes em que as pedrinhas atingem o solo e vA e vB os módulos de suas velocidades, nestes instantes. Despreze a resistência do ar e considere g constante.


Pode-se afirmar que:
A)
TA = TB e vA = vB
B)
TA > TB e vA > vB
C)
TA < TB e vA < vB
D)
TA = TB e vA < vB
E)
TA = TB e vA > vB

Resolução: clique aqui

Exercício 3:


De uma janela situada a uma altura h = 7,2 m do solo, Pedrinho lança horizontalmente uma bolinha de tênis com velocidade
v0 = 5 m/s. A bolinha atinge uma parede situada em frente à janela e a uma distância
D = 5 m. Determine a altura H do ponto onde a bolinha colide com a parede. Despreze a resistência do ar e considere g = 10 m/s2.

Resolução: clique aqui

Exercício 4:
Uma pequena esfera é lançada horizontalmente do ponto O, passando pelo ponto A 1 s após o lançamento (t = 1 s). Considere a aceleração da gravidade constante e despreze os atritos. Entre os pontos indicados, quais deles representam a posição da esfera no instante
t = 2 s?



Resolução:  clique aqui

Exercício 5:
Um avião voa horizontalmente com velocidade constante e igual a 50 m/s e a 320 m de altura do solo plano e horizontal. Num determinado instante o avião solta um fardo de alimentos que atinge o solo num determinado local. Determine a distância entre o ponto onde o fardo atinge o solo  e a reta vertical que contém o ponto de onde o avião soltou o fardo. Despreze a resistência do ar e considere g = 10 m/s2.

Resolução: clique aqui

Exercícios de revisão

Revisão/Ex 1:
(Mackenzie-SP)
Do alto de um edifício, lança-se horizontalmente uma pequena esfera de chumbo com velocidade de 8 m/s. Essa esfera toca o solo horizontal a uma distância de 24 m da base do prédio, em relação à vertical que passa pelo ponto de lançamento. Adote: g = 10 m/s
2.
Desprezando a resistência do ar, a altura desse prédio é:

a) 45 m.
b) 40 m.
c) 35 m.
d) 30 m.
e) 20 m.


Resolução: clique aqui

Revisão/Ex 2:
(UEMA)
Imagine-se em um barranco de 5 m acima de um lago de 4 m de largura infestado de piranhas. Para você não ser devorado pelas piranhas, qual deve ser a velocidade horizontal necessária para pular o lago?
Dado: g = 10 m/
s2.

a) 4 m/s.
b) 2 m/s.
c) 5 m/s.
d) 3 m/s.
e) 6 m/s.


Resolução: clique aqui

Revisão/Ex 3:
(ITA-SP)
Uma bola é lançada horizontalmente do alto de um edifício, tocando o solo decorridos aproximadamente 2 s. Sendo de 2,5 m a altura de cada andar, o número de andares do edifício é:
Dado: g = 10 m/s
2.

a) 5.
b) 6.
c) 8.
d) 9.
e) indeterminado, pois a velocidade horizontal de arremesso da bola não foi fornecida.


Resolução: clique aqui

Revisão/Ex 4:
(UPE) 
Um naturalista, na selva tropical, deseja capturar um macaco de uma espécie em extinção, dispondo de uma arma carregada com um dardo tranquilizante. No momento em que ambos estão a 45 m acima do solo, cada um em uma árvore, o naturalista dispara o dardo. O macaco, astuto, na tentativa de escapar do tiro se solta da árvore. Se a distância entre as árvores é de 60 m, a velocidade mínima do dardo, para que o macaco seja atingido no instante em que chega ao solo, vale em m/s:

Adote g = 10 m/s
2.

A) 45      B) 60      C) 10      D) 20      E) 30


Resolução: clique aqui

Revisão/Ex 5:
(VUNESP)
Um avião leva pacotes de mantimentos para socorrer pessoas ilhadas por uma enchente, voando horizontalmente a 500 m de altura, com velocidade de módulo 360xkm/h. Desprezando-se a resistência do ar e admitindo-se g = 10 m/
s2, determine:

a) a que distância da vertical que passa pelo avião, no instante em que são abandonados, os pacotes atingem o solo?
b) com que velocidade, em módulo, esses pacotes atingem o solo?


Resolução: clique aqui

domingo, 24 de maio de 2015

Arte do Blog

The Hat Shop

August Macke 
  
August Macke nasceu em 03 de janeiro de 1887, em Meschede, na Westfália. Seu pai, engenheiro civil, possuía um forte gosto pelas artes, mostrando um talento invulgar. Em 1897, Macke ingressou na escola secundária de Kreuz, onde conheceu Hans Thuar. O pai de Thuar possuía uma coleção de Xilografias japonesas, que causaram uma forte impressão no jovem. August Macke mudou-se para Bonn no final de 1900, onde ingressou na escola secundária. Nessa cidade conheceu Elisabeth Gerhardt, que se tornaria mais tarde sua esposa.

 Girls In The Forest

Ainda na escola Macke viu algumas pinturas de Arnold Böcklin no Kunstmuseum de Basileia, onde o simbolismo do artista deixou uma marca profunda no jovem sensível. Esta foi uma grande influência no desenvolvimento artístico de Macke, que estava cada vez mais determinado a ser artista. Essa ideia era contrariada por seu pai, que na altura estava em dificuldades financeiras e preocupava-se com o futuro do filho, achando que ele deveria levar uma vida normal.

Landscape In Hammamet

Contudo, os planos de Macke encontraram o apoio de um artesão, Alfred H. Schütte, um industrial pai de um colega, que, além de financiar seus estudos, permitiu a ele submeter seu trabalho à opinião de Paul Clemem, professor de História de Arte em Bonn, e de Claus Meyer, pintor e professor na Academia de Dusseldorf. Em outubro de 1904 Macke iniciou os seus estudos nessa Academia, começando por frequentar uma aula elementar regida pelo pintor de história Adolf Maennchen.
 
 Two Women and an Man on an Avenue
x
Em 1909 casou-se com Elizabeth Gerhardt e em 13 de abril de 1910 nasce seu filho Walter. No final do verão conhece Paul Klee, depois de visitar a Suíça. Na Primavera de 1912 viaja para Holanda. Exibe mais 16 desenhos na segunda exposição do Blaue Reiter. No final de setembro, viaja para Paris com Franz Marc e visita Robert Delaunay. Em outubro vê pinturas futuristas no Kunstsalon Feldmann, em Colonia. Em 08 de fevereiro de 1913 nasce seu segundo filho, Wolfgang. Em março visita a exposição de Delaunay, em Colónia. Em outubro, instala-se em Hilterfingen, no Lago de Thun, na Suíça. No início de abril de 1914, ele viaja para Marselha, via Thun e Berna.

Em 08 de agosto é chamado para o serviço militar e em 26 de setembro, August Macke é morto em combate.

Terrace of the country hou

 Clique aqui 

sábado, 23 de maio de 2015

Especial de Sábado

Efeitos estudados em Física e seus descobridores

Efeito Doppler

Borges e Nicolau

Johan Christian Andreas Doppler (1803-1853), físico austríaco explicou, em 1842, que quando uma fonte sonora aproxima-se ou afasta-se de um observador, a frequência percebida pelo observador é diferente da frequência emitida pela fonte. Durante a aproximação o som torna-se mais agudo e, ao afastar-se, mais grave. Este fenômeno foi denominado efeito Doppler


Quando há aproximação entre a fonte sonora e o observador, a frequência ouvida é maior do que a emitida, pois o observador recebe um número maior de frentes de ondas na unidade de tempo.


Quando há afastamento entre a fonte sonora e o observador, a freqüência ouvida é menor do que a emitida, pois o observador recebe um número menor de frentes de ondas na unidade de tempo.

Para as ondas luminosas também ocorre o efeito Doppler. Para que o efeito seja perceptível é necessário que a velocidade relativa entre a fonte e o observador seja da ordem de grandeza da velocidade da luz. É o caso de estrelas ou galáxias que se afastam da Terra. Quando a fonte de luz está se afastando a frequência vista é menor do que a real emitida. Dizemos que houve um desvio Doppler para o vermelho (Doppler red shift). Quando a fonte de luz está se aproximando a frequência vista é maior do que a real emitida. Dizemos que houve um desvio no sentido contrário, para o azul (Doppler blue shift). Os astrônomos, por exemplo, concluem que uma estrela está realizando um movimento de rotação observando que de um lado a luz emitida desvia para o azul (e portanto está se aproximando) e o outro lado desvia para o vermelho (portanto está se afastando). A análise do espectro da luz emitida por um astro é um recurso usado nas medições de distâncias e velocidades em Astronomia e Astrofísica. O eminente astrônomo, Edwin Powell Hubble (1889-1953), fundamentou-se nestes estudos para afirmar: “O Universo está em expansão”.

O efeito Doppler para a luz foi explicado pelo físico francês Armand Hyppolyte Fizeau (1819-1896). Por isso o efeito Doppler é também denominado efeito Doppler-Fizeau. 

Veja vídeos aqui e aqui
Saiba mais aqui

Próximo Sábado: Efeito Meissner

sexta-feira, 22 de maio de 2015

quinta-feira, 21 de maio de 2015

Visitantes


Caiu no vestibular

Curva com velocidade de módulo constante

(UFTM)
Num trecho plano e horizontal de uma estrada, um carro faz uma curva mantendo constante o módulo da sua velocidade em 25 m/s. A figura mostra o carro em duas posições, movendo-se em direções que fazem, entre si, um ângulo de 120°.



Considerando a massa do carro igual a 1000 kg, pode-se afirmar que, entre as duas posições indicadas, o módulo da variação da quantidade de movimento do veículo, em (kg.m)/s, é igual a 

a) 10000   
b) 12500   
c) 25000   
d) 12500√2
e) 25000
2

Resolução:



Sendo o triângulo equilátero, temos:

ΔQ = m.v = 1000kg.25m/s = 25000 kg.m/s

Resposta: c

quarta-feira, 20 de maio de 2015

Cursos do Blog - Eletricidade

A capacitância do condutor de raio R1 é maior do que a de raio R2
 
15ª aula
Ligação entre dois condutores esféricos

Borges e Nicolau

Vamos estabelecer um contato direto, ou através de um fio, entre dois condutores esféricos de raios R1 e R2eletrizados com cargas elétricas Q1 e Q2 e potenciais elétricos V1 e V2 (V1 V2), respectivamente. Despreze a indução eletrostática de um condutor sobre o outro.

Clique para ampliar

Após o estabelecimento do equilíbrio eletrostático os condutores adquirem o mesmo potencial V e passam a ter novas cargas Q'1 e Q'2. Vamos 
determinar Q'1 e Q'2:

Q1 + Q2 = Q'1 + Q'2
Q1 + Q2 = C1.V + C2.V
V = (Q1 + Q2)/(C1 + C2)

Q'1 = C1.V  =>  Q'1 = C1.(Q1 + Q2)/(C1 + C2)  =>


Q'2 = C1.V  =>  Q'2 = C2.(Q1 + Q2)/(C1 + C2)  =>


Resumindo:

Clique para ampliar
 
Exercícios básicos
 
Exercício 1:
Tem-se dois condutores esféricos de mesmo raio (R1 = R2 = R). O primeiro está eletrizado com carga elétrica Q1 = 6,0 μC  e o segundo está neutro (Q2 = 0). Os condutores são colocados em contato. Determine as novas cargas elétricas dos condutores (Q'1 e Q'2), após o estabelecimento do equilíbrio eletrostático entre eles.
  

Resolução: clique aqui

Exercício 2:
Tem-se dois condutores esféricos de mesmo raio (R1 = R2 = R). O primeiro está eletrizado com carga elétrica Q1 = 6,0 μC e o segundo com carga elétrica  
Q2 = 4,0 μC. Os condutores são colocados em contato. Determine as novas cargas elétricas dos condutores (Q'1 e Q'2), após o estabelecimento do equilíbrio eletrostático entre eles. 

Resolução: clique aqui

Exercício 3:
Dois condutores esféricos, A e B, de raios R1 = R e R2 = 9R, estão eletrizados com cargas elétricas Q1 = 6,0 μC e Q2 = 4,0 μC, respectivamente. Os condutores são colocados em contato.
 

a) Determine as novas cargas elétricas dos condutores (Q'1 e Q'2), após o estabelecimento do equilíbrio eletrostático entre eles.
b) Houve passagem de elétrons de A para B ou de B para A?

 

Resolução: clique aqui

Exercício 4:
Dois condutores esféricos, A e B, de raios 10 cm e 30 cm estão eletrizados com cargas elétricas iguais a 7,0 μC e 5,0 μC, respectivamente.
É dado k0 = 9.109 N.m2/C2

a) Quais os potenciais elétricos dos condutores?
b) Coloca-se os condutores em contato. Quais são as novas cargas elétricas dos condutores, após o estabelecimento do equilíbrio eletrostático entre eles. 
c) Nas condições do item b, calcule o potencial elétrico comum aos condutores.
 

Resolução: clique aqui

Exercício 5:
Retome o exercício anterior e seja 1,6.10-19 C a carga elétrica do próton que em módulo é igual à do elétron. Assinale a afirmação correta:

I) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 2,5.1013 elétrons de A para B.
II) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 2,5.1
013 elétrons de B para A.
III) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 2,5.1
013 prótons de A para B.
IV) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 1,6.1
026 elétrons de B para A.

Resolução:  clique aqui 

Exercícios de revisão

Revisão/Ex 1:
(UFPB)
Considere que X, Y, W e Z são quatro esferas metálicas idênticas. A carga de X é 8Q e as outras três esferas são neutras. Fazemos três experimentos em sequência. Primeiro, fazemos a eletrização por contato de X com Y. Em seguida, fazemos a eletrização por contato de X com W. Por último, fazemos a eletrização por contato de X com Z. O que acontecerá após a terceira eletrização?

a) A soma de todas as cargas será 8Q.
b) A carga de X será igual a de Y, assim como a carga de W será igual a de Z.
c) Todas as cargas ficarão iguais.
d) Y e W terão a mesma carga.
e) A carga de X será o dobro da de Y, a carga de Y será o dobro da de W e a carga de W será o dobro da de Z.


Resolução: clique aqui

Revisão/Ex 2:
(UNICAMP)
Duas esferas condutoras A e B distantes possuem o mesmo raio R e estão carregadas com cargas
Qa = -q e Qb = +2q, respectivamente.
Uma terceira esfera condutora C, de mesmo raio R, porém descarregada, é trazida desde longe e é levada a tocar primeiramente a esfera A, depois a esfera B e em seguida é levada novamente para longe.

a) Qual é a diferença de potencial entre as esferas A e B antes da esfera C tocá-las? É dado
k0, constante eletrostática no vácuo.
b) Qual é a carga final da esfera C?


Resolução: clique aqui

Revisão/Ex 3:
(Olimpíada Paulista de Física)
Uma esfera metálica de raio
R1 = 5,0 cm está carregada com 4,0.10-3 C. Outra esfera metálica de raio R2 = 15,0 cm está inicialmente descarregada. Se as duas esferas são conectadas eletricamente, podemos afirmar que:

a) a carga total será igualmente distribuída entre as duas esferas.
b) a carga da esfera maior será 1,0.
10-3 C.
c) a carga da esfera menor será 2,0.
10-3 C.
d) a carga da esfera maior será 3,0.
10-3 C.
e) a carga da esfera menor será 3,0.
10-3 C.

Resolução: clique aqui

Revisão/Ex 4:
(ITA-SP)
Duas esferas metálicas, A e B, de raios R e 3R, respectivamente, são postas em contato. Inicialmente A possui carga elétrica positiva +2Q e B, carga -Q. Após atingir o equilíbrio eletrostático, as novas cargas de A e B passam a ser, respectivamente:

a) Q/2, Q/2.
b) 3Q/4, Q/4.
c) 3Q/2, Q/2.
d) Q/4, 3Q/4.
e) 4Q/3 e -Q/3.


Resolução: clique aqui

Revisão/Ex 5:
(ITA-SP)
Uma esfera metálica isolada, de raio
R1 = 10,0 cm, é carregada no vácuo até atingir o potencial V1 = 9,0 V. Em seguida, ela é posta em contato com outra esfera metálica isolada, de raio R2 = 5,0 cm, inicialmente neutra. Após atingido o equilíbrio, qual das alternativas abaixo melhor descreve a situação física?
Dado:
k0 = 9.109 N.m2/C2

 

a) A esfera maior terá uma carga de 0,66.10-10 C.
b) A esfera maior terá um potencial de 4,5 V.
c) A esfera menor terá uma carga de 0,66.1
0-10 C.
d) A esfera menor terá um potencial de 4,5 V.
e) A carga total é igualmente dividida entre as duas esferas.


Resolução: clique aqui