sábado, 23 de setembro de 2017

Rumo ao ENEM

Olá pessoal. Hoje terminamos a série de exercícios de Termologia apresentados no ENEM. Resolva as questões propostas e verifique a quantas anda o seu conhecimento. Em caso de dúvida consulte as aulas do Blog.

Borges e Nicolau

Termologia IV

Questão 25:

O ciclo da água é fundamental para a preservação da vida no planeta. As condições climáticas da Terra permitem que a água sofra mudanças de fase e a compreensão dessas transformações é fundamental para se entender o ciclo hidrológico. Numa dessas mudanças, a água ou a umidade da terra absorve o calor do sol e dos arredores. Quando já foi absorvido calor suficiente, algumas das moléculas do líquido podem ter energia necessária para começar a subir para a atmosfera.

Disponível em: http://www.keroagua.blogspot.com. Acesso em: 30 mar. 2009 (adaptado).

A transformação mencionada no texto é a


a) fusão. 

b) liquefação. 
c) evaporação.
d) solidificação.
e) condensação.

Resolução:


A água ou a umidade da terra absorve lentamente o calor do Sol e dos arredores, passando continuamente do estado líquido para o estado de vapor: é a evaporação. Ela ocorre em qualquer temperatura, através da superfície do líquido exposta ao ambiente.


Nota:
A passagem do estado líquido para o estado de vapor é chamada vaporização, podendo acontecer de duas maneiras: a evaporação e a ebulição. A ebulição (ou fervura) ocorre em temperatura bem definida, função da pressão sob a qual realiza-se o processo.


Resposta: c


Questão 26:


Arroz e feijão formam um “par perfeito”, pois fornecem energia, aminoácidos e diversos nutrientes. O que falta em um deles pode ser encontrado no outro. Por exemplo, o arroz é pobre no aminoácido lisina, que é encontrado em abundância no feijão, e o aminoácido metionina é abundante no arroz e pouco encontrado no feijão. A tabela seguinte apresenta informações nutricionais desses dois
alimentos.



A partir das informações contidas no texto e na tabela, conclui-se que

a) os carboidratos contidos no arroz são mais nutritivos que os do feijão.
b) o arroz é mais calórico que o feijão por conter maior quantidade de lipídios.
c) as proteínas do arroz têm a mesma composição de aminoácidos que as do feijão.
d) a combinação de arroz com feijão contém energia e nutrientes e é pobre em colesterol.
e) duas colheres de arroz e três de feijão são menos calóricas que três colheres de arroz e duas de feijão.


Resolução:


a) Incorreta.

No arroz, há menor quantidade de carboidratos do que no feijão.
b) Incorreta.

O conteúdo energético do arroz é menor do que o do feijão.
c) Incorreta.

As proteínas do arroz apresentam composição de
aminoácidos diferente da do feijão.
d) Correta.

A combinação de arroz com feijão contém energia e nutrientes e não tem colesterol.
e) Incorreta
Conteúdo energético:


duas colheres de arroz:

2 x 41 kcal = 82 kcal
três colheres de feijão:

3 x 58 kcal = 174 kcal
Total: 256 kcal


três colheres de arroz:

3 x 41 kcal = 123 kcal
duas colheres de feijão:

2 x 58 kcal = 116 kcal
Total: 239 kcal


Logo, duas colheres de arroz e três de feijão são mais calóricas que três colheres de arroz e duas de feijão.


Resposta: d


Questão 27:


A Constelação Vulpécula (Raposa) encontra-se a 63 anos luz da Terra, fora do sistema solar. Ali, o planeta gigante HD 189733b, 15% maior que Júpiter, concentra vapor de água na atmosfera. A temperatura do vapor atinge 900 graus Celsius. "A água sempre está lá, de alguma forma, mas às vezes é possível que seja escondida por outros tipos de nuvens", afirmaram os astrônomos do Spitzer Science Center (SSC), com sede em Pasadena, Califórnia, responsável pela descoberta. A água foi detectada pelo espectrógrafo infravermelho, um aparelho do telescópio espacial Spitzer.
Correio Braziliense, 11 dez 2008 (adaptado).


De acordo com o texto, o planeta concentra vapor de água em sua atmosfera a 900 graus Celsius. Sobre a vaporização infere-se que


a) se há vapor de água no planeta, é certo que existe água no estado líquido também.
b) a temperatura de ebulição da água independe da pressão, em um local elevado ou ao nível do mar, ela ferve sempre a 100 graus Celsius.
c) o calor latente de vaporização da água é o calor necessário para fazer 1 kg de água líquida se transformar em 1 kg de vapor de água a 100 graus Celsius.
d) um líquido pode ser superaquecido acima de sua temperatura de ebulição normal, mas de forma nenhuma nesse líquido haverá formação de bolhas.
e) a água em uma panela pode atingir a temperatura de ebulição em alguns minutos, e é necessário muito menos tempo para fazer a água vaporizar completamente.


Resolução:


a) Incorreta.
A existência de vapor de água no planeta não implica na existência de água no estado líquido, pois a temperatura do planeta pode ser muito elevada.
b) Incorreta.
A temperatura de ebulição da água depende da pressão externa. Ao nível do mar, na Terra, sob pressão de 1,0 atm a água ferve a 100°C. No alto de uma montanha a pressão atmosférica é menor e menor é a temperatura de ebulição.
c) Correta.
O calor latente de vaporização da água é a quantidade de calor que a água deve receber por unidade de massa (por exemplo 1,0 kg) enquanto está fervendo (por exemplo a 100°C, sob pressão normal).
d) Incorreta
Sempre há formação de bolhas no processo de ebulição.
e) Incorreta.
Cálculo da quantidade de calor necessária para aquecer uma massa m de água de 0°C a 100°C:


Q1 = m.c.Δθ => Q1 = m.1,0.100 => Q1 = 100.m

Cálculo da quantidade de calor necessária para vaporizar a mesma massa m de água, utilizando a mesma potência térmica:


Q2 = m.L => Q2 = m.540 => Q2 = 540.m

Logo, o intervalo de tempo para vaporizar a água completamente é maior.


Resposta: c


Questão 28:


Em grandes metrópoles, devido a mudanças na superfície terrestre – asfalto e concreto em excesso, por exemplo – formam-se ilhas de calor. A resposta da atmosfera a esse fenômeno é a precipitação convectiva. Isso explica a violência das chuvas em São Paulo, onde as ilhas de calor chegam a ter 2 a 3 graus centígrados de diferença em relação ao seu entorno.Revista Terra da Gente Ano 5. no 60. Abril 2009 (adaptado).

As características físicas, tanto do material como da estrutura projetada de uma edificação, são a base para compreensão de resposta daquela tecnologia construtiva em termos de conforto ambiental. Nas mesmas condições ambientais (temperatura, umidade e pressão), uma quadra terá melhor conforto térmico se


a) pavimentada com material de baixo calor específico, pois quanto menor o calor específico de determinado material, menor será a variação térmica sofrida pelo mesmo ao receber determinada quantidade de calor.
b) pavimentada com material de baixa capacidade térmica, pois quanto menor a capacidade térmica de determinada estrutura, menor será a variação térmica sofrida por ela ao receber determinada quantidade de calor.
c) pavimentada com material de alta capacidade térmica, pois quanto maior a capacidade térmica de determinada estrutura, menor será a variação térmica sofrida por ela ao receber determinada quantidade de calor.
d) possuir um sistema de vaporização, pois ambientes mais úmidos permitem uma mudança de temperatura lenta, já que o vapor d’água possui a capacidade de armazenar calor sem grandes alterações térmicas, devido ao baixo calor específico da água (em relação à madeira, por exemplo).
e) possuir um sistema de sucção do vapor d'água, pois ambientes mais secos permitem uma mudança de temperatura lenta, já que o vapor d'água possui a capacidade de armazenar calor sem grandes alterações térmicas, devido ao baixo calor específico da água (em relação à madeira, por exemplo).


Resolução:

a) Incorreta
De Q = m.c.Δθ, podemos concluir que quanto menor for o calor específico c, maior será a variação de temperatura Δθ, para uma dada massa m, ao receber determinada quantidade de calor Q.
b) Incorreta.
De Q = C.Δθ, podemos concluir que quanto menor for a capacidade térmica C, maior será a variação de temperatura Δθ, para uma dada massa m, ao receber determinada quantidade de calor Q.
c) Correta.
De Q = C.Δθ, podemos concluir que quanto maior for a capacidade térmica C, menor será a variação de temperatura Δθ, para uma dada massa m, ao receber determinada quantidade de calor Q
d) e e) Incorretas.

O calor específico da água é muito elevado quando comparado com outras substâncias.


Resposta: c
Questão 29:

Umidade relativa do ar é o termo usado para descrever a quantidade de vapor de água contido na atmosfera. Ela é definida pela razão entre o conteúdo real de umidade de uma parcela de ar e a quantidade de umidade que a mesma parcela de ar pode armazenar na mesma temperatura e pressão quando está saturada de vapor, isto é, com 100% de umidade relativa.
O gráfico representa a relação entre a umidade relativa do ar e sua temperatura ao longo de um período de 24 horas em um determinado local.




Considerando-se as informações do texto e do gráfico, conclui-se que


a) a insolação é um fator que provoca variação da umidade relativa do ar.
b) o ar vai adquirindo maior quantidade de vapor de água à medida que se aquece.
c) a presença de umidade relativa do ar é diretamente proporcional à temperatura do ar.
d) a umidade relativa do ar indica, em termos absolutos, a quantidade de vapor de água existente na atmosfera.
e) a variação da umidade do ar se verifica no verão, e não no inverno, quando as temperaturas permanecem baixas.


Resolução:


Do gráfico fornecido verifica-se que a umidade relativa do ar diminuiu com o aumento da temperatura. A insolação ao longo de um dia provoca uma variação da temperatura ambiente e uma consequente variação na umidade relativa do ar.


Resposta: a


Questão 30:


A invenção da geladeira proporcionou uma revolução no aproveitamento dos alimentos, ao permitir que fossem armazenados e transportados por longos períodos. A figura apresentada ilustra o processo, cíclico de funcionamento de uma geladeira, em que um gás no interior de uma tubulação é forçado a circular entre o congelador e a parte externa da geladeira. É por meio dos processos de compressão, que ocorre na parte externa, e de expansão, que ocorre na parte interna, que o gás proporciona a troca de calor entre o interior e o exterior da geladeira.



Nos processos de transformação de energia envolvidos no funcionamento da geladeira,


a) a expansão do gás é um processo que cede a energia necessária ao resfriamento da parte interna da geladeira.
b) o calor flui de forma não espontânea da parte mais fria, no interior, para a mais quente, no exterior da geladeira.
c) a quantidade de calor cedida ao meio externo é igual ao calor retirado da geladeira.
d) a eficiência é tanto maior quanto menos isolado termicamente do ambiente externo for o seu compartimento interno.
e) a energia retirada do interior pode ser devolvida à geladeira abrindo-se a sua porta, o que reduz seu consumo de energia.


Resolução:


A transferência preferencial de calor do corpo mais quente para o corpo mais frio levou Rudolf Clausius a enunciar a segunda lei da termodinâmica do seguinte modo:


O calor não passa espontaneamente de um corpo para outro de temperatura mais alta.

Nos processos de transformação de energia envolvidos no funcionamento da geladeira, o calor flui de forma não espontânea da parte mais fria, no interior, para a parte mais quente, no exterior da geladeira. Para isso, é necessária a realização de trabalho o que é feita pelo compressor.


Esquema da geladeira:


Q2 quantidade de calor retirada da fonte fria (congelador)
Q1 quantidade de calor total rejeitada para a fonte quente (meio exterior)

τ trabalho realizado pelo compressor.


Resposta: b

Questão 31:


Até 1824 acreditava-se que as máquinas térmicas, cujos exemplos são as máquinas a vapor e os atuais motores a combustão. poderiam ter um funcionamento ideal. Sadi Carnot demonstrou a impossibilidade de uma máquina térmica, funcionando em ciclos entre duas fontes térmicas (uma quente e outra fria), obter 100% de rendimento.

Tal limitação ocorre porque essas máquinas


a) realizam trabalho mecânico.
b) produzem aumento da entropia.
c) utilizam transformações adiabáticas.
d) contrariam a lei da conservação de energia.
e) funcionam com temperatura igual à da fonte quente.


Resolução:


De acordo com a 2ª lei da Termodinâmica é impossível uma máquina térmica, funcionando em ciclos entre duas fontes térmicas (uma quente e outra fria), converter integralmente calor em trabalho. Por isso, seu rendimento não pode ser 100%. Portanto, necessariamente parte do calor retirado da fonte quente é cedido à fonte fria (meio exterior), o que implica num aumento da entropia do universo.


Resposta: b


Questão 32:

Nos dias frios é comum ouvir expressões como: "Esta roupa é quentinha" ou então "Feche a janela para o frio não entrar". As expressões do senso comum utilizadas estão em desacordo com o conceito de calor da termodinâmica. A roupa não é "quentinha", muito menos o frio "entra" pela janela.
A utilização das expressões "roupa é quentinha" e "para
o frio não entrar" é inadequada, pois o(a):


a) roupa absorve a temperatura do corpo da pessoa, e o frio não entra pela janela, o calor é que sai por ela.
b) roupa não fornece calor por ser um isolante térmico, e o frio não entra pela janela. pois é a temperatura da sala que sai por ela.
c) roupa não é uma fonte de temperatura, e o frio não pode entrar pela janela, pois o calor está contido na sala, logo o calor é que sai por ela.
d) calor não está contido num corpo, sendo uma forma de energia em trânsito de um corpo de maior temperatura para outro de menor temperatura.
e) calor está contido no corpo da pessoa, e não na roupa, sendo uma forma de temperatura em trânsito de um corpo mais quente para um corpo mais frio.


Resolução:


Calor é energia térmica em  trânsito que se transfere espontaneamente do corpo mais quente para o corpo mais frio.
Está, portanto, errado afirmar  que uma roupa contém calor ou falar em trânsito de frio.


Resposta: d


Questão 33:


O motor de combustão interna, utilizado no transporte de pessoas e cargas, é uma máquina térmica cujo ciclo consiste em quatro etapas: admissão, compressão, explosão/expansão e escape. Essas etapas estão representadas no diagrama da pressão em função do volume. Nos motores a gasolina, a mistura ar/combustível entra em combustão por uma centelha elétrica.


           
Para o motor descrito, em qual ponto do ciclo é produzida centelha elétrica?


a) A
b) B
c) C
d) D
e) E


Resolução:


A centelha elétrica que  provoca a explosão ocorre ao final da etapa de compressão, isto é, a centelha elétrica é produzida no ponto C.


Resposta: c

sexta-feira, 22 de setembro de 2017

Física Animada

quinta-feira, 21 de setembro de 2017

Rumo ao ENEM

Olá Pessoal. Mais uma série de exercícios de Termologia. Tente resolver antes de consultar as respostas. Caso precise de ajuda vá às aulas do blog onde você certamente encontrará o que procura.

Borges e Nicolau

Termologia III

Questão 17:

As cidades industrializadas produzem grandes proporções de gases como o CO2, o principal gás causador do efeito estufa. Isso ocorre por causa da quantidade de combustíveis fósseis queimados, principalmente no transporte, mas também em caldeiras industriais. Além disso, nessas cidades concentram-se as maiores áreas com solos asfaltados e concretados, o que aumenta a retenção de calor, formando o que se conhece por "ilhas de calor". Tal fenômeno ocorre porque esses materiais absorvem o calor e o devolvem para o ar sob a forma de radiação térmica. Em áreas urbanas, devido à atuação conjunta do efeito estufa e das "ilhas de calor", espera-se que o consumo de energia elétrica

a) diminua devido à utilização de caldeiras por indústrias metalúrgicas.
b) aumente devido ao bloqueio da luz do sol pelos gases do efeito estufa.
c) diminua devido à não necessidade de aquecer a água utilizada em indústrias.
d) aumente devido à necessidade de maior refrigeração de indústrias e residências.
e) diminua devido à grande quantidade de radiação térmica reutilizada.


Resolução:


O efeito estufa e as "ilhas de calor" provocam aumento da temperatura ambiente local. Por isso, aparelhos de ar condicionado e de refrigeração são mais utilizados, aumentando o consumo de energia elétrica.


Resposta: d


Questão 18:


Sob pressão normal (ao nível do mar), a água entra em ebulição à temperatura de 100 °C. Tendo por base essa informação, um garoto residente em uma cidade litorânea fez a seguinte experiência:

• Colocou uma caneca metálica contendo água no fogareiro do fogão de sua casa.
• Quando a água começou a ferver, encostou cuidadosamente a extremidade mais estreita de uma seringa de injeção, desprovida de agulha, na superfície do líquido e, erguendo o êmbolo da seringa, aspirou certa quantidade de água para seu interior, tapando-a em seguida.
• Verificando após alguns instantes que a água da seringa havia parado de ferver, ele ergueu o êmbolo da seringa, constatando, intrigado, que a água voltou a ferver após um pequeno deslocamento do êmbolo.


Considerando o procedimento anterior, a água volta a ferver porque esse deslocamento


a) permite a entrada de calor do ambiente externo para o interior da seringa.
b) provoca, por atrito, um aquecimento da água contida na seringa.
c) produz um aumento de volume que aumenta o ponto de
ebulição da água.
d) proporciona uma queda de pressão no interior da seringa que diminui o ponto de ebulição da água.
e) possibilita uma diminuição da densidade da água que facilita sua ebulição.


Resolução:


A temperatura de ebulição da água depende da pressão externa a que ela está submetida. Ao nível do mar, sujeita à pressão atmosférica a temperatura de ebulição da água é de  100°C.


No interior da seringa, quando o êmbolo foi deslocado, a pressão externa diminuiu, o mesmo ocorrendo com a temperatura de ebulição da água, que passou a ferver.


Resposta: d


Questão 19:

Nos últimos anos, o gás natural (GNV: gás natural veicular) vem sendo utilizado pela frota de veículos nacional, por ser viável economicamente e menos agressivo do ponto de vista ambiental.
O quadro compara algumas características do gás natural e da gasolina em condições ambiente.



Apesar das vantagens no uso de GNV, sua utilização implica algumas adaptações técnicas, pois, em condições ambiente, o volume de combustível necessário, em relação ao de gasolina, para produzir a
mesma energia, seria


a) muito maior, o que requer um motor muito mais potente.
b) muito maior, o que requer que ele seja armazenado a alta pressão.
c) igual, mas sua potência será muito menor.
d) muito menor, o que o torna o veículo menos eficiente.
e) muito menor, o que facilita sua dispersão para a atmosfera


Resolução:


O GNV e a gasolina têm praticamente o mesmo poder calorífico. Isto significa que a energia gerada pelo GNV e pela gasolina são praticamente iguais para a mesma massa. Nestas condições, como a densidade do GNV é muito menor do que a da gasolina, concluímos que o volume do GNV deve ser muito maior, o requer que seja armazenado a alta pressão.


Resposta: b


Questão 20:


Aumentar a eficiência na queima de combustível dos motores a combustão e reduzir suas emissões de poluentes é a meta de qualquer fabricante de motores. É também o foco de uma pesquisa brasileira que envolve experimentos com plasma, o quarto estado da matéria e que está presente no processo de ignição. A interação da faísca emitida pela vela de ignição com as moléculas de combustível gera o plasma que provoca a explosão liberadora de energia que, por sua vez, faz o motor funcionar.
Disponível em: www.inovacaotecnologica.com.br. Acesso em: 22 jul. 2010 (adaptado).


No entanto, a busca da eficiência referenciada no texto apresenta como fator limitante:

a) o tipo de combustível, fóssil, que utilizam. Sendo um insumo não renovável, em algum momento estará esgotado.
b) um dos princípios da termodinâmica, segundo o qual o rendimento de uma máquina térmica nunca atinge o ideal.
c) o funcionamento cíclico de todos os motores. A repetição contínua dos movimentos exige que parte da energia seja transferida ao próximo ciclo.
d) as forças de atrito inevitável entre as peças. Tais forças provocam desgastes contínuos que com o tempo levam qualquer material à fadiga e ruptura.
e) a temperatura em que eles trabalham. Para atingir o plasma, é necessária uma temperatura maior que a de fusão do aço com que se fazem os motores.


Resolução:

Conforme a Segunda Lei da Termodinâmica, "é impossível construir uma máquina térmica operando em ciclos, cujo único efeito é retirar calor de uma fonte e convertê-lo integralmente em trabalho". Em outras palavras. "o rendimento de uma máquina térmica é sempre menor que 1 (100%)".


Resposta: b


Questã
o 21:


Em um experimento, foram utilizadas duas garrafas PET, uma pintada de branco e a outra de preto, acopladas cada uma a um termômetro. No ponto médio da distância entre as garrafas, foi mantida acesa, durante alguns minutos, uma lâmpada incandescente. Em seguida, a lâmpada foi desligada. Durante o experimento, foram monitoradas as temperaturas das garrafas: a) enquanto a lâmpada permaneceu acesa e b) após a lâmpada ser desligada e atingirem equilíbrio térmico com o ambiente.



A taxa de variação da temperatura da garrafa preta, em comparação à da branca, durante todo experimento, foi;

a) igual no aquecimento e igual no resfriamento
b) maior no aquecimento e igual no resfriamento.
c) menor no aquecimento e igual no resfriamento.
d) maior no aquecimento e menor no resfriamento.
e) maior no aquecimento e maior no resfriamento.


Resolução:


Enquanto a lâmpada permaneceu acesa a garrafa preta absorveu mais rapidamente energia radiante do que a garrafa branca. Portanto, a taxa de variação da temperatura da garrafa preta, em comparação à da branca, foi maior no aquecimento.


Após a lâmpada ser desligada, ambas resfriaram até atingirem equilíbrio térmico com o ambiente. Mas todo bom absorvedor de energia radiante é também um bom emissor. Logo, a garrafa preta apresenta maior taxa de variação de temperatura no resfriamento.


Resposta: e


Questão 22:


Aquecedores solares usados em residências têm o objetivo de elevar a temperatura da água até 70 °C. No entanto, a temperatura ideal da água para um banho é de 30 °C. Por isso, deve-se misturar a água aquecida com a água à temperatura ambiente de um outro reservatório, que se encontra a 25 °C.

Qual a razão entre a massa de água quente e a massa de água fria na mistura para um banho à temperatura ideal?


a) 0,111.      b) 0,125.      c) 0,357.      d) 0,428.      e) 0,833.


Resolução:


No reservatório A, que contem água a 70 ºC temos:


massa de água: mA
temperatura inicial: 70 ºC
temperatura final: 30 ºC


No reservatório B, que contém água a 25 ºC, temos:


massa de água: mB
temperatura inicial: 25 ºC
temperatura final: 30 ºC


Ao misturarmos o conteúdo dos recipientes A e B, haverá troca de calor e a somatória dos calores envolvidos será nula. Assim:

QA
+ QB = 0
mA.c.(30-70) + mB.c.(30-25) = 0
mA.40 = mB.5
mA/mB = 5/40 => mA/mB = 0,125


Resposta: b


Questão 23:


Durante a primeira fase do projeto de uma usina de geração de energia elétrica, os engenheiros da equipe de avaliação de impactos ambientais procuram saber se esse projeto está de acordo com as normas ambientais. A nova planta estará localizada à beira de um rio, cuja temperatura média da água é de 25 °C, e usará a sua água somente para refrigeração. O projeto pretende que a usina opere com 1,0 MW de potência elétrica e, em razão de restrições técnicas, o dobro dessa potência será dissipada por seu sistema de arrefecimento, na forma de calor. Para atender a resolução número 430, de 13 de maio de 2011, do Conselho Nacional do Meio Ambiente, com uma ampla margem de segurança, os engenheiros determinaram que a água só poderá ser devolvida ao rio com um aumento de temperatura de, no máximo, 3 °C em relação à temperatura da água do rio captada pelo sistema de arrefecimento. Considere o calor específico da água igual a 4 kJ/(kg°C).

Para atender essa determinação, o valor mínimo do fluxo de água, em kg/s, para a refrigeração da usina deve ser mais próximo de


a) 42.       b) 84.       c) 167.       d) 250.       e) 500.


Resolução:

A potência de refrigeração é o dobro da potência elétrica que a usina deve operar, isto é:


Pot = 2,0 MW = 2,0.106 W.
Q = Pot.Δt
mcΔθ = Pot.Δt
m/Δt= Pot/cΔθ 
m/Δt = 2,0.106W/(4000J/kg.°C).3°C
m/Δt = (500/3) kg/s = 166,6 kg/s


O valor mínimo do fluxo de água para a refrigeração da usina deve ser mais próximo de 167 kg/s.


Resposta: c


Questão 24:


Num experimento, um professor deixa duas bandejas de mesma massa, uma de plástico e outra de alumínio, sobre a mesa do laboratório. Após algumas horas, ele pede aos alunos que avaliem a temperatura das duas bandejas, usando para isso o tato. Seus alunos afirmam, categoricamente, que a bandeja de alumínio encontra-se numa temperatura mais baixa. Intrigado, ele propõe uma segunda atividade, em que coloca um cubo de gelo sobre cada uma das bandejas, que estão em equilíbrio térmico com o ambiente, e os questiona em qual delas a taxa de derretimento do gelo será maior. O aluno que responder corretamente ao questionamento do professor dirá que o derretimento ocorrerá

a) mais rapidamente na bandeja de alumínio, pois ela tem uma maior condutividade térmica que a de plástico.
b) mais rapidamente na bandeja de plástico, pois ela tem inicialmente uma temperatura mais alta que a de alumínio.
c) mais rapidamente na bandeja de plástico, pois ela tem uma maior capacidade térmica que a de alumínio.
d) mais rapidamente na bandeja de alumínio, pois ela tem um calor específico menor que a de plástico.
e) com a mesma rapidez nas duas bandejas, pois apresentarão a mesma variação de temperatura.


Resolução:


O derretimento ocorrerá mais rapidamente na bandeja de alumínio, pois ela é  melhor condutora de calor, isto é, a bandeja de alumínio tem uma maior condutividade térmica que a de plástico.


Resposta: a

quarta-feira, 20 de setembro de 2017

Cursos do Blog - Eletricidade

 Capacitores

27ª aula
Capacitores. Capacitor num circuito elétrico

Borges e Nicolau

Capacitor

É um sistema constituído de dois condutores, denominados armaduras, entre os quais existe um isolante. A função de um capacitor é armazenar carga elétrica e energia potencial elétrica.

Ao ser submetido a uma tensão elétrica U o capacitor se carrega. Uma armadura se eletriza com carga elétrica +Q e a outra –Q. Na figura representamos o símbolo de um capacitor: dois traços paralelos e de mesmo comprimento. Destacamos também o gerador a ele ligado e as cargas elétricas que suas armaduras armazenam.




A carga elétrica Q da armadura positiva, que em módulo é igual à carga elétrica da armadura negativa é chamada carga elétrica do capacitor.

Mudando-se a tensão U aplicada ao capacitor, sua carga elétrica Q muda na mesma proporção. Isto dignifica que Q e U são grandezas diretamente proporcionais. Logo, a relação Q/U é constante para um dado capacitor. Esta relação é indicada por C e recebe o nome de capacitância eletrostática do capacitor:
x
C = Q/U
x
No sistema Internacional de unidades (SI) a unidade de capacitância é o coulomb/volt que é chamado farad (F).

A energia potencial elétrica armazenada por um capacitor é dada por:

Epot = (Q.U)/2
x
Capacitor num circuito elétrico

Quando inserimos um capacitor num circuito ele se carrega. Normalmente, desprezamos o intervalo de tempo que o capacitor leva para se carregar, isto é, já o consideramos carregado e no trecho de circuito onde ele se situa não passa corrente elétrica contínua. Assim, uma das utilidades do capacitor é bloquear corrente contínua. Entretanto, o capacitor deixa passar corrente alternada de alta frequência e bloqueia corrente alternada de baixa frequência. Daí seu uso como seletor de frequência.

No circuito abaixo, a leitura do amperímetro ideal A1 é i = E/(r+R), de acordo com a lei de Pouillet.

A leitura do amperímetro ideal A2 é zero, considerando o capacitor plenamente carregado. A leitura do voltímetro ideal V é a tensão U no capacitor que é a mesma no resistor, com quem está ligado em paralelo.



Exercícios básicos

Exercício 1:
Aplica-se a um capacitor uma tensão elétrica U = 12 V.
A capacitância do capacitor é C = 2,0 µF (µ = micro; 1µ = 10-6).
Determine:
a) a carga elétrica armazenada pelo capacitor;
b) a energia potencial elétrica armazenada.

Resolução: clique aqui

Exercício 2:
No circuito abaixo considere o capacitor carregado. Determine as leituras dos amperímetros e do voltímetro, considerados ideais e a carga elétrica Q armazenada pelo capacitor.


Resolução: clique aqui

Exercício 3:
Qual é a carga elétrica armazenada pelo capacitor ligado ao terminais de um gerador, como indica o esquema abaixo?
Dado: C = 1nF (n: nano; 1n = 10-9).


Resolução: clique aqui

Determine a carga elétrica e a energia potencial elétrica armazenada pelo capacitor nos circuitos abaixo:

Exercício 4: 


Resolução: clique aqui

Exercício 5:

  
Resolução: clique aqui 

Exercícios de Revisão

Revisão/Ex 1:
(Ufla-MG)
A diferença de potencial entre as placas de um capacitor de placas paralelas de 40xμF carregado é de 40 V.

a) Qual a carga no capacitor?
b) Qual a energia armazenada?


Resolução: clique aqui

Revisão/Ex 2:
(PUC-CAMPINAS)
Um capacitor de capacitância 10
μF está carregado e com uma diferença de potencial de 500 V. A energia eletrostática armazenada pelo capacitor é igual a:

a) 2,51 J
b) 2,15 J
c) 2,25 J
d) 5,21 J
e) 12,5 J


Resolução: clique aqui

Revisão/Ex 3:
(PUC-SP)
A carga no capacitor do circuito abaixo vale:

a) 10
μC        b) 20 μC        c) 30 μC        d) 40 μC        e) 50 μC


Resolução: clique aqui

Revisão/Ex 4:
(UFCE)
No circuito visto na figura, a bateria é ideal e o capacitor C tem capacitância igual a 7,0
μF. Determine a carga do capacitor C.



Resolução: clique aqui

Revisão/Ex 5:
(Unicamp-SP)
Dado o circuito elétrico esquematizado na figura, obtenha:




a) a carga no capacitor enquanto a chave ch estiver aberta;
b) a carga final no capacitor após o fechamento da chave.


Resolução: clique aqui
s
Desafio: 

Para o circuito esquematizado, determine as cargas elétricas armazenadas pelos capacitores.


R1 = 4,0 Ω
R
2 = 6,0 Ω
C
1 = 2,0.10-6 F
C
2 = 4,0.10-6 F
E = 12 V
r = 2,0 Ω


A resolução será publicada na próxima quarta-feira.

Resolução do desafio anterior: 

No circuito abaixo, quais são as intensidades das correntes, indicadas pelo amperímetro A, ideal, quando a chave está na posição 1 e quando está 
na posição 2?


Resolução:

Chave Ch na posição 1: gerador + receptor + resistor.

i = (E - E')/ΣR
i = (12 - 6,0)/1,0+4,0+1,0 => i = 6,0/6,0 => i = 1,0 A


Chave Ch na posição 2: geradores em série + resistor.

i = (E + E')/ΣR
i = (12 + 6,0)/1,0+4,0+1,0 => i = 18/6,0 => i = 3,0 A

terça-feira, 19 de setembro de 2017

Cursos do Blog - Termologia, Óptica e Ondas

 Carl Friendrich Gauss, (1777 – 1855), matemático, astrônomo e físico alemão

 27ª aula
Equação de Gauss. Aumento linear transversal

Borges e Nicolau

Equação de Gauss

Na aula anterior aprendemos como obter graficamente a imagem de um objeto colocado diante de um espelho esférico. A posição da imagem pode ser obtida por meio de uma equação: Equação de Gauss


Sejam p e p’ as abscissas do objeto e da imagem em relação ao sistema de eixos cartesianos indicado na figura acima, obedecendo à seguinte convenção de sinais:

Objeto real: p > 0
Imagem real: p' > 0
Imagem virtual: p' < 0

Para a distância focal f, temos:

Espelho côncavo: f > 0
Espelho convexo: f < 0

p, p’ e f se relacionam pela Equação de Gauss:

1/f = 1/p + 1/p'

Aumento linear transversal A

Sejam i e o as alturas da imagem e do objeto, respectivamente. A relação entre i e o é indicada por A e recebe o nome de aumento linear transversal:

A = i/o

Convenção de sinais:

Imagem direita: A > 0
Imagem invertida: A < 0

O aumento linear transversal e as abscissas p e p’ do objeto e da imagem também se relacionam:

A = -p'/p

Exercícios básicos

Exercício 1:
Um objeto linear situa-se a 30 cm de um espelho esférico côncavo de distância focal 6 cm.

a) Determine a que distância do espelho se forma a imagem.
b) A imagem é real ou virtual?

Resolução: clique aqui

Exercício 2:
Um objeto linear situa-se a 30 cm de um espelho esférico convexo cuja distância focal é, em módulo, igual a 6 cm.

a) Determine a que distância do espelho se forma a imagem.
b) A imagem é real ou virtual?

Resolução: clique aqui

Exercício 3:
A imagem real de um objeto real fornecida por um espelho esférico côncavo, de raio de curvatura 20 cm, situa-se a 30 cm do espelho. Determine:

a) a distância focal do espelho;
b) a que distância do espelho está posicionado o objeto;
c) o aumento linear transversal.

Resolução: clique aqui

Exercício 4:
A imagem de um objeto situado diante de um espelho esférico convexo tem altura igual a 1/3 da altura do objeto. O módulo da distância focal do espelho é de 15 cm. Determine a distância entre o objeto e a imagem.

Resolução: clique aqui

Exercício 5:
Uma calota esférica de pequena abertura e de raio R = 20 cm é espelhada na superfície interna e na superfície externa. Dois objetos retilíneos de mesma altura, O1 e O2, são dispostos perpendicularmente ao eixo principal e à mesma distância de 15 cm das faces refletoras. Determine a distância entre as imagens conjugadas. 

Resolução: clique aqui 

Exercícios de Revisão

Revisão/Ex 1:
(UFAC)
Um pássaro está a 90 cm de um espelho convexo, cujo módulo da distância focal é 10 cm. Qual a distância da imagem ao espelho?

A) 90,0 cm

B) 9,0 cm
C) 100,0 cm
D) 0,9 cm
E) 80,0 cm

Resolução: clique aqui

Revisão/Ex 2:
(UEG-GO)
Conforme a ilustração abaixo, um objeto de 10 cm de altura move-se no eixo de um espelho esférico côncavo com raio de curvatura R = 20 cm, aproximando-se dele. O objeto parte de uma distância de 50 cm do vértice do espelho, animado com uma velocidade constante de 5 cm/s.




Responda ao que se pede.


a) No instante t = 2 s, quais são as características da imagem formada? Justifique.
b) Em qual instante a imagem do objeto se formará no infinito? Justifique.
c) No instante t = 7 s, qual é a posição e o tamanho da imagem formada? Justifique. 


Resolução: clique aqui

Revisão/Ex 3:
(UFU-MG)
Um ponto luminoso está localizado sobre o eixo de um espelho esférico côncavo, como mostra a figura a seguir.
Dado: Considere que p é sempre maior que q.




Esse ponto luminoso começa a se aproximar do espelho, de raio de curvatura R, movimentando-se sobre o eixo. Com base nessas informações, é correto afirmar que a distância entre o ponto luminoso e o espelho para a qual a distância entre o ponto luminoso e sua imagem é igual a R é dada por:

a) R.(1+
2/2)
b) R.
2/2
c) R
d) 2R


Resolução: clique aqui

Revisão/Ex 4:
(Unimontes-MG)
A figura abaixo representa um espelho esférico côncavo em que a imagem tem uma altura três vezes maior do que a do objeto. As posições do objeto e da imagem são, respectivamente.




A) 10 cm e 20 cm
B) 20 cm e 30 cm
C) 10 cm e 30 cm
D) 30 cm e 40 cm


Resolução: clique aqui

Revisão/Ex 5:
(UFSE)
Considere dois espelhos esféricos, de raios de curvatura 20 cm cada, sendo um côncavo e o outro convexo.


Analise as afirmações acerca da imagem de uma pequena vela, colocada sobre o eixo principal do espelho.


Se a vela for colocada

0 0 - a 20 cm de qualquer dos dois espelhos, a imagem formada tem o mesmo tamanho da vela.
1 1 - a 15 cm do espelho convexo, sua imagem é virtual.
2 2 - a 15 cm do espelho côncavo, sua imagem é real.

3 3 - a 25 cm do espelho côncavo, sua imagem pode ser captada num anteparo.
4 4 - à distância menor do que 10 cm do espelho côncavo, a imagem da vela é invertida. 


Resolução: clique aqui
b
Desafio:
 

Um retângulo de 6,0 cm x 10 cm é colocado diante de um espelho esférico de Gauss, de distância focal f = 10 cm, conforme a figura. 


A imagem do retângulo é um:

a) quadrado de área 60 cm2
b) retângulo de área 60
cm2
c) trapézio de área aproximadamente igual a 60
cm2
d) quadrado de área aproximadamente igual a 60
cm2
e) trapézio de área aproximadamente igual a 107
cm2

A resolução será publicada na próxima terça-feira

Resolução do desafio anterior:

A reta r representa o eixo principal de um espelho esférico, o e i são, respectivamente, o objeto e a correspondente imagem. 
O espelho esférico é concavo ou convexo? 
Quais pontos representam o centro de curvatura C e o vértice V do espelho?


Resolução:
 

O espelho é côncavo, pois a imagem é direita e maior do que o objeto. Ao unirmos as extremidades superiores de o e i encontramos o centro de curvatura C: ponto 1. Ao unirmos a extremidade do objeto o invertido com a extremidade da imagem i, encontramos o vértice V: ponto 5.