Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

sábado, 5 de junho de 2021

Eletricidade - Aula 15 (continuação)

Exercícios de revisão   

Revisão/Ex 1:
(UFPB)
Considere que X, Y, W e Z são quatro esferas metálicas idênticas. A carga de X é 8Q e as outras três esferas são neutras. Fazemos três experimentos em sequência. Primeiro, fazemos a eletrização por contato de X com Y. Em seguida, fazemos a eletrização por contato de X com W. Por último, fazemos a eletrização por contato de X com Z. O que acontecerá após a terceira eletrização?

a) A soma de todas as cargas será 8Q.
b) A carga de X será igual a de Y, assim como a carga de W será igual a de Z.
c) Todas as cargas ficarão iguais.
d) Y e W terão a mesma carga.
e) A carga de X será o dobro da de Y, a carga de Y será o dobro da de W e a carga de W será o dobro da de Z.


Resolução: clique aqui

Revisão/Ex 2:
(UNICAMP)
Duas esferas condutoras A e B distantes possuem o mesmo raio R e estão carregadas com cargas
Qa = -q e Qb = +2q, respectivamente.
Uma terceira esfera condutora C, de mesmo raio R, porém descarregada, é trazida desde longe e é levada a tocar primeiramente a esfera A, depois a esfera B e em seguida é levada novamente para longe.

a) Qual é a diferença de potencial entre as esferas A e B antes da esfera C tocá-las? É dado
k0, constante eletrostática no vácuo.
b) Qual é a carga final da esfera C?


Resolução: clique aqui

Revisão/Ex 3:
(Olimpíada Paulista de Física)
Uma esfera metálica de raio
R1 = 5,0 cm está carregada com 4,0.10-3 C. Outra esfera metálica de raio R2 = 15,0 cm está inicialmente descarregada. Se as duas esferas são conectadas eletricamente, podemos afirmar que:

a) a carga total será igualmente distribuída entre as duas esferas.
b) a carga da esfera maior será 1,0.
10-3 C.
c) a carga da esfera menor será 2,0.
10-3 C.
d) a carga da esfera maior será 3,0.
10-3 C.
e) a carga da esfera menor será 3,0.
10-3 C.

Resolução: clique aqui

Revisão/Ex 4:
(ITA-SP)
Duas esferas metálicas, A e B, de raios R e 3R, respectivamente, são postas em contato. Inicialmente A possui carga elétrica positiva +2Q e B, carga -Q. Após atingir o equilíbrio eletrostático, as novas cargas de A e B passam a ser, respectivamente:

a) Q/2, Q/2.
b) 3Q/4, Q/4.
c) 3Q/2, Q/2.
d) Q/4, 3Q/4.
e) 4Q/3 e -Q/3.


Resolução: clique aqui

Revisão/Ex 5:
(ITA-SP)
Uma esfera metálica isolada, de raio
R1
= 10,0 cm, é carregada no vácuo até atingir o potencial V1 = 9,0 V. Em seguida, ela é posta em contato com outra esfera metálica isolada, de raio R2 = 5,0 cm, inicialmente neutra. Após atingido o equilíbrio, qual das alternativas abaixo melhor descreve a situação física?
Dado:
k0 = 9.109 N.m2/C2

a) A esfera maior terá uma carga de 0,66.10-10 C.
b) A esfera maior terá um potencial de 4,5 V.
c) A esfera menor terá uma carga de 0,66.1
0-10 C.
d) A esfera menor terá um potencial de 4,5 V.
e) A carga total é igualmente dividida entre as duas esferas.


Resolução: clique aqui
z
Desafio: 

São dadas três esferas metálicas. Isoladas, A, B e C, de raios R, R e 2R, respectivamente, com R = 30 cm. A esfera A está eletrizada com potencial elétrico de 3,0.103 V e B e C estão descarregadas. 
É dada a constante eletrostática do meio K0 = 9.109 N.m2/C2.

a) Determine a carga elétrica inicial Q de A.
b) Unem-se as esferas por meio de fios condutores de capacitâncias desprezíveis. Qual é o potencial elétrico de equilíbrio e quais as novas cargas elétricas Q
A, QB e QC, de A, B e C?
c) Sabe-se que ao se estabelecer a ligação entre os condutores ocorre, entre eles, uma transferência de elétrons. Analise entre quais condutores se deu esta passagem de elétrons e determine o número de elétrons que os condutores trocaram. É dada a carga elétrica do elétron, em valor absoluto: e = 1,6.10-19 C.

A resolução será publicada na próximo sábado.

Resolução do desafio anterior:
 
Na superfície esférica de uma bolha de sabão de raio R = 20 cm, distribui-se uniformemente uma carga elétrica Q. A espessura da bolha é e tal 
que (R-e)3 = 7784 cm3. O potencial elétrico da distribuição esférica é de 45 V.
É dada a constante eletrostática do meio: K0=9.109 N.m2/C2. 

a) Qual é o valor de Q?
b) Qual é a capacitância da  bolha?
c) A bolha arrebenta e forma uma gota esférica única , que mantém , distribuída em sua superfície, a carga elétrica Q. Qual é o potencial elétrico desta gota?


a) 
V = K0.Q/R => 45 = 9.109.Q/0,20 => Q = 1,0.10-9 C

b) 

C = Q/V => C = 1,0.10-9/45 => C ≅ 2,2.10-11 F

c)
 
Cálculo do raio da gota Rg

Vamos igualar os volumes da bolha e da gota:

(4/3)πR3 - (4/3)π(R-e)3 = (4/3)πRg3
R3 - (R-e)3 = Rg3
(20)3 - 7784 = Rg3
8000 - 7784 = Rg3
216 = Rg3 => Rg3 = (6,0)3 Rg = 6,0 cm

Potencial elétrico da gota

V' = K0.Q/Rg
V' = 9.109.1,0.10-9/6,0.10-2
V' =  1,5.102 V

sexta-feira, 4 de junho de 2021

Termologia, Óptica e Ondas - Aula 15 (continuação)

Exercícios de revisão

Revisão/Ex 1:
(ACAFE-SC)
Considerando p a pressão, V o volume e N o número de moléculas de um certo gás ideal, a energia cinética média por molécula desse gás pode ser escrita:

a) Np/2V       b) 2pV/3N         c) 3pN/2V         d) 2pN/3V         e) 3pV/2N


Resolução: clique aqui

Revisão/Ex 2:
(UFRN)
Um gás ideal contido num recipiente sofre uma mudança de temperatura de 300 K para 1.200 K. Qual a razão entre as velocidades médias das moléculas desse gás (
v300/v1200)?

Resolução: clique aqui

Revisão/Ex 3:
(UPE)
Em relação à teoria cinética molecular dos gases, é CORRETO afirmar que:

a) a energia cinética média de um conjunto de moléculas de um gás depende, apenas e exclusivamente, das massas das moléculas desse gás.
b) quando quadruplicamos a temperatura absoluta de um conjunto de moléculas de um gás, suas moléculas terão velocidade média quadruplicada.
c) quanto maiores as interações entre as moléculas de um gás, mais rigorosamente ele se comportará como um gás ideal.
d) numa mesma temperatura, independentemente das massas molares de cada gás, as moléculas têm energias cinéticas médias iguais.
e) as colisões entre moléculas de um gás perfeito com as paredes do recipiente que as contém são inelásticas para qualquer tipo de gás ideal.


Resolução: clique aqui

Revisão/Ex 4:
(UNIFEI)
De acordo com a teoria cinética dos gases, a energia cinética média das moléculas que constituem um gás é proporcional à temperatura desse gás. Considere um gás à temperatura ambiente (27 ºC), constituído por moléculas de hidrogênio e de oxigênio. Sabendo que as massas atômicas do hidrogênio e do oxigênio são iguais a 1,0 u.m.a. e 16,0 u.m.a., respectivamente, quais moléculas se movem com maiores velocidades: as moléculas de hidrogênio ou as de oxigênio? Justifique.


Resolução: clique aqui

Revisão/Ex 5:
(UFU-MG)
Considere uma amostra de hidrogênio e outra de oxigênio, ambas a uma mesma temperatura. Sabe-se que a massa molecular do hidrogênio é 3,3.1
0-27 kg e a do oxigênio é 53.10-27 kg. Podemos afirmar que:

a) Se duplicarmos a temperatura absoluta das amostras , os valores das energias cinéticas médias das moléculas não se alteram.
b) A energia cinética das moléculas de hidrogênio é menor que a energia cinética das moléculas de oxigênio.
c) A velocidade média das moléculas de oxigênio é maior que a velocidade média das moléculas de hidrogênio.
d) A energia cinética das moléculas de hidrogênio não se anula no zero absoluto.
e) A energia cinética das moléculas de oxigênio se anula no zero absoluto.


Resolução: clique aqui
a
Desafio:
 

Um recipiente contém um gás perfeito. Sua temperatura passa de 300 K para 600 K.

a) Qual é a relação entre as energias cinéticas médias por molécula e
300/e600?
b) Qual é a relação entre as velocidades média da moléculas desse gás
v300/v600?

A resolução será publicada na próxima sexta-feira.

Resolução do desafio anterior 

Um recipiente fechado, de capacidade térmica desprezível, contém oxigênio sob pressão de 5,0 atm. Um furo é feito no recipiente e escapa oxigênio até que a pressão do gás que resta no recipiente fique igual à pressão atmosférica (1,0 atm).

Considere a temperatura constante e igual a 27°C.

a) Qual é a porcentagem de oxigênio que escapa para o meio ambiente?
b) Fecha-se o furo.
Qual a temperatura que o oxigênio deve ser aquecido para que a pressão passe de 1,0 atm para 5,0 atm?


a) Seja n o número de mols de oxigênio sob pressão de 5,0 atm e n’, sob pressão de 1,0 atm:

Da equação de Clapeyron, pV = nRT, temos: 


5.0.V = n.R.T (1) e 1,0.V = n’.R.T (2)
(1)/(2): 5,0 = n/n’ => n’ = n/5,0


Número de mols que escapam: n’’ = n – n’ = n – n/5,0 => n’’= 4,0n/5,0


A  porcentagem de oxigênio que escapa para o meio ambiente:


n’’/n = 4,0/5,0 = 0,80 = 80%


b) 5.0.V = n’.R.300 (1) e 1,0.V = n’.R.T (2)


(2)/(1): 5,0 = T/300 => T = 1500 K = 1227 °C
 

Respostas: a) 80%; b) 1227 °C

quinta-feira, 3 de junho de 2021

Mecânica - Aula 15 (continuação)

Exercícios de revisão

Revisão/Ex 1:
(U. Mackenzie-SP)
Uma lancha, subindo um rio, percorre em relação às margens, 2,34 km em 1 h 18 min. Ao descer o rio, percorre a mesma distância em 26 min. Observa-se que, tanto na subida como na descida, o módulo da velocidade da lancha em relação á água é o mesmo. O módulo da velocidade da correnteza em relação às margens é:


a) 5,4 km/h    b) 4,5 km/h    c) 3,6 km/h    d) 2,7 km/h    e) 1,8 km/h


Resolução: clique aqui 

Revisão/Ex 2:
(ITA-SP)
Um barco, com motor em regime constante, desce um trecho retilíneo de um rio em 2,0 h e sobe o mesmo trecho em 4,0 h. Quanto tempo levará o barco para percorrer o mesmo trecho, rio abaixo, com o motor desligado? Admita que a velocidade da correnteza seja constante.

a)  3,0 h        b)  4,0 h        c)  6,0 h        d)  8,0 h        e)  10 h


Resolução: clique aqui

Revisão/Ex 3:
(UFMT)
Uma pessoa  tem velocidade, relativa a uma esteira, de módulo 1,5 m/s e direção perpendicular à da velocidade de arrastamento da esteira. A largura da esteira é de 30 m e sua velocidade de arrastamento, em relação ao solo, tem módulo igual a 2,0 m/s. Calcule:

a) o módulo da velocidade da pessoa em relação ao solo.
b) a distância percorrida pela pessoa, em relação ao solo, ao atravessar a esteira.


Resolução: clique aqui

Revisão/Ex 4:
(EFEI-MG)
Um barco atravessa um rio seguindo a menor distância entre as margens que são paralelas. Sabendo que a largura do rio é de 2,0 km, que a travessia é feita em 15 min e que a velocidade da correnteza é 6,0 km/h, podemos afirmar que a velocidade do barco em relação à água é:

a) 2,0 km/h
b) 6,0 km/h
c) 8,0 km/h
d) 10 km/h

e) 14 km/h

Resolução: clique aqui 

Revisão/Ex 5:
(Fatec-SP)
Sob chuva que cai verticalmente, uma pessoa caminha horizontalmente com velocidade 1,0 m/s, inclinando o guarda-chuva a 30º (em relação à vertical), para resguardar-se o melhor possível. Dado que tg 60º = 1,7, a velocidade da chuva em relação ao solo:

a) é 1,7 m/s
b) é 2,0 m/s
c) é 0,87 m/s
d) depende do vento.

e) depende da altura da nuvem de origem.

Resolução: clique aqui
b
Desafio: 

Um barco desloca-se num rio de margens paralelas, cuja correnteza tem velocidade constante V. A velocidade do barco, em relação às águas é de 5,0 m/s. O barco parte de A e atinge a margem oposta em B, conforme indica a figura abaixo.


O intervalo de tempo gasto na passagem de A para B é de 1min 40s. Qual é o valor de V? 

O resultado será publicado na próxima quinta-feira.
 
Resolução do desafio anterior: 

No instante t = 0 uma partícula parte do repouso de um ponto A e descreve um movimento circular uniformemente variado, no sentido horário, com aceleração escalar 2,0 m/s2, conforme a figura.


Determine no instante t = 3,0 s:


a) a posição da partícula;
b) o módulo da  aceleração centrípeta (acp)
c) o módulo da  aceleração tangencial (at)
d) o módulo da aceleração total (a)
e) represente  os vetores velocidade, aceleração centrípeta, aceleração vetorial e aceleração total.
Dado: o comprimento da circunferência que a partícula descreve é de 18 m. π = 3.


a) 
Sendo um MUV, com v0 = 0,  e fazendo s0 = 0, temos:

s = α.t2/2 => s = 2,0.t2/2 =>  s = t2 (SI), vem para t = 3,0 s: s = 9,0 m

Logo, a partícula percorre metade da circunferência, atingindo no instante 
t = 3,0 s ao ponto C.

b)

v = α.t => v = 2,0.3,0 => v = 6,0 m/s
2.π.R = 18 => 2.3.R = 18 => R = 6,0 m
acp = v2/R => acp = (6,0)2/6,0 => acp = 6,0 m/s2
 

c)
at = IαI = 2,0 m/s2

d) 
a2 = acp2 + at2 = 36 + 4,0 = 40 => a 6,3 m/s2

e) Na figura abaixo representamos os vetores pedidos:



quarta-feira, 2 de junho de 2021

Eletricidade - Aula 15

A capacitância do condutor de raio R1 é maior do que a de raio R2
 
15ª aula
Ligação entre dois condutores esféricos

Borges e Nicolau

Vamos estabelecer um contato direto, ou através de um fio, entre dois condutores esféricos de raios R1 e R2eletrizados com cargas elétricas Q1 e Q2 e potenciais elétricos V1 e V2 (V1 V2), respectivamente. Despreze a indução eletrostática de um condutor sobre o outro.

Clique para ampliar

Após o estabelecimento do equilíbrio eletrostático os condutores adquirem o mesmo potencial V e passam a ter novas cargas Q'1 e Q'2. Vamos 
determinar Q'1 e Q'2:

Q1 + Q2 = Q'1 + Q'2
Q1 + Q2 = C1.V + C2.V
V = (Q1 + Q2)/(C1 + C2)

Q'1 = C1.V  =>  Q'1 = C1.(Q1 + Q2)/(C1 + C2)  =>


Q'2 = C1.V  =>  Q'2 = C2.(Q1 + Q2)/(C1 + C2)  =>


Resumindo:

Clique para ampliar
 
Exercícios básicos
 
Exercício 1:
Tem-se dois condutores esféricos de mesmo raio (R1 = R2 = R). O primeiro está eletrizado com carga elétrica Q1 = 6,0 μC  e o segundo está neutro (Q2 = 0). Os condutores são colocados em contato. Determine as novas cargas elétricas dos condutores (Q'1 e Q'2), após o estabelecimento do equilíbrio eletrostático entre eles.
  

Resolução: clique aqui

Exercício 2:
Tem-se dois condutores esféricos de mesmo raio (R1 = R2 = R). O primeiro está eletrizado com carga elétrica Q1 = 6,0 μC e o segundo com carga elétrica  
Q2 = 4,0 μC. Os condutores são colocados em contato. Determine as novas cargas elétricas dos condutores (Q'1 e Q'2), após o estabelecimento do equilíbrio eletrostático entre eles. 

Resolução: clique aqui

Exercício 3:
Dois condutores esféricos, A e B, de raios R1 = R e R2 = 9R, estão eletrizados com cargas elétricas Q1 = 6,0 μC e Q2 = 4,0 μC, respectivamente. Os condutores são colocados em contato.
 

a) Determine as novas cargas elétricas dos condutores (Q'1 e Q'2), após o estabelecimento do equilíbrio eletrostático entre eles.
b) Houve passagem de elétrons de A para B ou de B para A?

 

Resolução: clique aqui 

Exercício 4:
Dois condutores esféricos, A e B, de raios 10 cm e 30 cm estão eletrizados com cargas elétricas iguais a 7,0 μC e 5,0 μC, respectivamente.
É dado k0 = 9.109 N.m2/C2

a) Quais os potenciais elétricos dos condutores?
b) Coloca-se os condutores em contato. Quais são as novas cargas elétricas dos condutores, após o estabelecimento do equilíbrio eletrostático entre eles. 
c) Nas condições do item b, calcule o potencial elétrico comum aos condutores.
 

Resolução: clique aqui

Exercício 5:
Retome o exercício anterior e seja 1,6.10-19 C a carga elétrica do próton que em módulo é igual à do elétron. Assinale a afirmação correta:

I) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 2,5.1013 elétrons de A para B.
II) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 2,5.1
013 elétrons de B para A.
III) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 2,5.1
013 prótons de A para B.
IV) Desde o estabelecimento do contato entre os condutores até atingir o equilíbrio eletrostático, ocorre a passagem de 1,6.1
026 elétrons de B para A.

Resolução:  clique aqui 

terça-feira, 1 de junho de 2021

Termologia, Óptica e Ondas - Aula 15


15ª aula
Estudo dos gases (III)

Borges e Nicolau

Teoria Cinética dos Gases

Gás ideal ou gás perfeito

No estudo do comportamento de um gás, consideramos o seguinte modelo:

• as moléculas do gás movimentam-se caoticamente;
• os choques entre as moléculas e contra as paredes do recipiente são perfeitamente elásticos;
• as moléculas não exercem forças entre si, exceto quando colidem;
• as moléculas apresentam volume próprio desprezível em comparação com o volume ocupado pelo gás.

O gás que obedece a este modelo é chamado gás perfeito ou gás ideal. Um gás real submetido a altas temperaturas e baixas pressões apresenta um comportamento que se aproxima ao de um gás ideal.

Pressão p exercida por um gás perfeito

A pressão p exercida por um gás perfeito pode ser dada em função da densidade μ do gás e da velocidade média v de suas moléculas:


Energia Cinética do gás perfeito

De p = (1/3).μ.v2, vem:


A energia cinética de um determinado número de mols de um gás perfeito é diretamente proporcional à temperatura absoluta.

Velocidade média das moléculas do gás

De Ec = (3/2).n.R.T, resulta:


A velocidade média das moléculas de um gás perfeito, a uma certa temperatura, depende da natureza do gás, dada pela massa molar M.

Energia Cinética média por molécula do gás

Seja N o número de moléculas do gás. A energia cinética média por molécula é dada por:


Sendo NA o número de Avogadro, podemos calcular o número de mols, dividindo N por NA: n = N/NA . Assim, temos:


A relação R/NA = k é denominada constante de Boltzmann e é igual a
1,38.10-23 J/K. Portanto:


Gases diferentes à mesma temperatura têm a mesma energia cinética média por molécula.

Exercícios básicos

Exercício 1:
Um gás perfeito sofre uma transformação isobárica e seu volume é reduzido à metade do valor inicial. A temperatura absoluta do gás:
a) permanece a mesma;
b) duplica
c) triplica
d) cai à metade
e) fica três vezes menor

Resolução: clique aqui

Exercício 2:
O que ocorre com a energia cinética do gás em virtude da transformação descrita na questão 1?
a) permanece a mesma;
b) duplica
c) quadruplica
d) cai à metade
e) fica quatro vezes menor

Resolução: clique aqui

Exercício 3:
Certa massa de um gás perfeito sofre uma transformação de modo que sua temperatura aumenta de 127 ºC para 327 ºC. A relação entre as energias cinéticas do gás entre os estados inicial e final é igual a:

a) 1/3 b) 2/3 c) 1 d) 4/3 e) 5/3

Resolução: clique aqui

Exercício 4:
Um mol de um gás perfeito ocupa o volume de 22,4 L, sob pressão de
1 atm e a 0 ºC. Sendo 1 atm = 105 N/m2 e 1 L = 10-3 m3, qual é a energia cinética do gás?

Resolução: clique aqui

Exercício 5:
Considere um recipiente contendo um gás perfeito. Analise as afirmações:
I) A energia cinética do gás independe da temperatura a que o gás se encontra.
II) A 0 ºC a energia cinética do gás é nula.
III) A energia cinética média por molécula independe da natureza do gás.
Tem-se:
a) Somente a afirmação I) é correta.
b) Somente a afirmação II) é correta.
c) Somente a afirmação III) é correta.
d) Todas as afirmações são corretas.
e) Somente duas das afirmações são corretas.

Resolução: clique aqui
x
Exercício 6:
Dois recipientes, A e B, contém gases de naturezas diferentes. Os gases estão à mesma temperatura. O gás do recipiente A tem massa molar maior do que a do recipiente B. Sejam vA e vB as velocidades médias das moléculas de A e B, respectivamente. Pode-se afirmar que:

a) vA = vB
b) vA > vB
c) vA < vB
d) vA = 2vB
e) vA = vB/2

Resolução: clique aqui