sexta-feira, 18 de junho de 2021

Termologia, Óptica e Ondas - Aula 17 (continuação)

Exercícios de revisão

Revisão/Ex 1:
(UF Santa Maria-RS)
Um gás ideal sofre uma transformação: absorve 50 cal de energia na forma de calor e expande-se realizando um trabalho de 300 J. Considerando 1 cal = 4,2 J, a variação da energia interna do gás é, em J, de:

a) 250        b) –250        c) 510        d) –90        e) 90


Resolução: clique aqui

Revisão/Ex 2:
(UFLA-MG)
O diagrama pV da figura mostra uma transformação sofrida por 0,4 mol de um gás monoatômico ideal.



Considerando TA = 300 K e TB = 900 K, a quantidade de calor envolvida na transformação será (considere 1 cal = 4 J e R = 2 cal/mol.K):

 a) 220 cal      b) -1.220 cal      c) 2.500 cal      d) -2.500 cal      e) 1.220 cal

Resolução: clique aqui

Revisão/Ex 3:
(UFRGS)
É correto afirmar que, durante a expansão isotérmica de uma amostra de gás ideal:

a) a energia cinética média das moléculas do gás aumenta.
b) o calor absorvido pelo gás é nulo.
c) o trabalho realizado pelo gás é nulo.
d) o trabalho realizado pelo gás é igual à variação da sua energia interna.
e) o trabalho realizado pelo gás é igual ao calor absorvido pelo mesmo.


Resolução: clique aqui

Revisão/Ex 4:
(U.F.Uberlândia-MG)
Um gás ideal é comprimido tão rapidamente que o calor trocado com o meio é desprezível. É correto afirmar que:


a) a temperatura do gás diminui
b) o gás realiza trabalho para o meio exterior
c) a energia interna do gás aumenta
d) o volume do gás aumenta
e) a pressão do gás diminui


Resolução: clique aqui

Revisão/Ex 5:
(URCA)
Quando um sistema termodinâmico vai de um estado A para um estado B sua energia interna aumenta de 200 J. Ao retornar ao estado A o sistema cede 80 J de calor à sua vizinhança e realiza trabalho
τ. O valor de τ é:

a) 120 J;
b) -120 J;
c) 120 cal;
d) 80 J;
e) 200 J.


Resolução: clique aqui
c
Desafio:
 

Um gás ideal monoatômico sofre a transformação AB indicada 
no diagrama p x V (diagrama de Clapeyron).


Calcule nesta transformação, em função de p
0 e V0:

a) O trabalho trocado pelo gás.
b) A variação de energia interna.
c) A quantidade de calor trocada.


A resolução será publicada na próxima sexta-feira

Resolução do desafio anterior

Um gás passa do estado A para o estado B seguindo diferentes caminhos (AB, ACB, ADB), conforme indica a figura abaixo.


a) O trabalho que o gás realiza na transformação ACB é menor do que na transformação ADB.
b) O trabalho que o gás realiza é o mesmo nas três  transformações, isto é, o trabalho independe do caminho que leva o gás do estado A para o estado B.
c) A área do triângulo ACB é numericamente igual ao trabalho que o gás realiza na transformação ACB.
d) Na transformação AC o trabalho que o gás realiza é menor do que na transformação DB.
e) A temperatura do gás no estado B é maior do que no estado A.


a) Incorreta
O trabalho é numericamente igual à área delimitada pela curva que representa a transformação até o eixo dos vês. Assim, o trabalho que o gás realiza na transformação ACB é MAIOR do que na transformação ADB.
 

b) Incorreta
Por ser dado pela área, conforme descrito no item a), concluímos que o trabalho DEPENDE do caminho que leva o gás do estado A para o estado B.

c) Incorreta

A área do triângulo ACB é numericamente igual ao trabalho que o gás realiza na transformação cíclica ACBA.

d) Incorreta

As transformações AC e BD são isométricas. Logo os trabalhos são NULOS.
 

e) Correta
Pela Lei geral dos gases, temos: pA.VA/TA = pB.VB/TB.
Sendo pA
.VA < pB.VB, resulta: TA < TB.

quinta-feira, 17 de junho de 2021

Mecânica - Aula 17 (continuação)

Exercícios de revisão
 
O texto abaixo refere-se aos exercícios 1 e 2.

(PUC-SP) Um projétil é lançado em certa direção com velocidade inicial, cujas projeções vertical e horizontal têm módulos, respectivamente, de 100 m/s e 75 m/s. A trajetória descrita é parabólica e o projétil toca o solo horizontal em B.


 
Revisão/Ex 1:
Desprezando a resistência do ar:

a) no ponto de altura máxima, a velocidade do projétil é nula.
b) o projétil chega a B com velocidade nula.
c) a velocidade vetorial do projétil ao atingir B é igual à de lançamento.
d) durante o movimento há conservação das componentes horizontal e vertical da velocidade.
e) durante o movimento apenas a componente horizontal da velocidade é conservada.


Resolução: clique aqui

Revisão/Ex 2:
Quanto ao módulo da velocidade, tem valor mínimo igual a:

a) 125 m/s.
b) 100 m/s.
c) 75 m/s.
d) zero.
e) 25 m/s.


Resolução: clique aqui

Revisão/Ex 3:
(Mackenzie-SP)
Uma bola é chutada a partir de um ponto de uma região plana e horizontal, onde o campo gravitacional é considerado uniforme, segundo a direção vertical e descendente. A trajetória descrita pela bola é uma parábola, IgI = 10 m/s
2 e a resistência do ar é desprezível.


Considerando os valores da tabela acima, conclui-se que o ângulo
α de lançamento da bola foi, aproximadamente,

a) 15º     b) 30º     c) 45º     d) 50º     e) 75º


Resolução: clique aqui

Revisão/Ex 4:
(VUNESP)
O gol que Pelé não fez

Na copa de 1970, na partida entre Brasil e Tchecoslováquia, Pelé pega a bola um pouco ante do meio de campo, vê o goleiro tcheco adiantado, e arrisca um chute que entrou para a história do futebol brasileiro. No início do lance, a bola parte do solo com velocidade de 108 km/h (30 m/s), e três segundos depois toca novamente o solo atrás da linha de fundo, depois de descrever uma parábola no ar e passar rente à trave, para alívio do assustado goleiro.
Na figura vemos uma simulação do chute de Pelé.



Considerando que o vetor velocidade inicial da bola depois do chute de Pelé fazia um ângulo de 30º com a horizontal (sen 30º = 0,50 e cos 30º = 0,85) e desconsiderando a resistência do ar e a rotação da bola, pode-se afirmar que a distância horizontal entre o ponto de onde a bola partiu do solo depois do chute e o ponto onde ela tocou o solo atrás da linha de fundo era, em metros, um valor mais próximo de

a) 52,0.     b) 64,5.     c) 76,5.     d) 80,4.     e) 86,6.


Resolução: clique aqui

Revisão/Ex 5:
(UECE)
Uma bola é chutada da superfície de um terreno plano segundo um ângulo
φ0 acima do horizontal. 




Se θ é o ângulo de elevação do ponto mais alto da trajetória, visto do ponto de lançamento, a razão tg θ/tg φ0, desprezando-se a resistência do ar, é igual a

A) 1/4
B) 1/2
C) 1/6
D) 1/8


Resolução: clique aqui
g
Desafio: 

Uma bola é colocada a 32 m de um prédio sobre o solo, considerado horizontal. Cada andar do prédio, incluindo o térreo, têm 3,0 m de altura. A bola é lançada com velocidade de módulo v0 = 20 m/s e que forma com a horizontal um ângulo θ, tal que sen θ = 0,60 e cos θ = 0,80, conforme indica a figura.


Sendo g = 10 m/s
2, determine o andar que foi atingido pela bola.
A bola atingiu o prédio durante seu movimento de subida ou descida?


A resolução será publicada na próxima quinta-feira
 
Resolução do desafio anterior: 

Um projétil é lançado horizontalmente com velocidade v0 = 40 m/s de um local situado a 180 m do solo, suposto horizontal. Considere g = 10 m/s2 e despreze a ação do ar.


a) Determine  o tempo de queda
tq e a que distância d da vertical de lançamento o projétil atinge o solo.
b) Determine a que altura do solo se encontra o projétil no instante t
q/2?
c) No instante tq/2 quais são as componentes vx e vy da velocidade do projétil e qual é o módulo de sua velocidade v?


a)
y = g.t2/2 => H = g.tq2/2 => 180 = 10.tq2/2 => tq = 6,0 s
x = v0.t => d = 40.6,0 => d = 240 m

b)
y = g.t2/2 => h = 10.(3,0)2/2 => h = 45 m

c)
vx = v0 = 40 m/s 
vy = g.t => vy = 10.3,0 => vy = 30 m/s 
v2 = vx2+vy2 => v2 = (40)2+(30)2 => v = 50 m/s

Respostas:

a) 6,0 s; 240 m
b) 45 m
c) 40 m/s; 30 m/s; 50 m/s

quarta-feira, 16 de junho de 2021

Eletricidade - Aula 17

Fonte: CPqD

17ª aula
Energia e potência da corrente elétrica

Borges e Nicolau

Uma bateria (gerador elétrico) é ligada a uma lâmpada (figura a) ou a um motor elétrico (figura b). Cada uma das situações representa um circuito elétrico, isto é, um conjunto de aparelhos com os quais pode-se estabelecer uma corrente elétrica.

Clique para ampliar

Seja Eel a energia elétrica consumida pela lâmpada ou pelo motor elétrico, durante um certo intervalo de tempo Δt. 
A potência elétrica P consumida pela lâmpada ou pelo motor elétrico é, por definição, dada por:
P =  Eel/Δt

No Sistema internacional, a unidade de energia Eel é o joule (J) e a de intervalo de tempo Δt é o segundo (s). Assim, a unidade de potência P é o joule/segundo (J/s) que recebe o nome de watt (W).
Portanto,  13W = 1 J/s
Múltiplos:  1 kW =
103 W (k: quilo); 1 MW = 106 W (M: mega)

De P = Eel/Δt, vem:
Eel = P.Δt

Uma unidade de energia muito usada em Eletricidade é o quilowatt-hora (kWh). Para obtermos a energia em kWh, devemos expressar a potência em kW e o tempo em h. 

Resumindo:

xxxxxxxxxxxxxxxxxxxxxxxxx
Eel = P.Δt
xxxxxxxxxxxxxxxxxxxxxxxxx J = W.sel
xxxxxxxxxxxxxxxxxxxxxxxxx kWh = kW.hel

Outra expressão para a potência

Vamos considerar a corrente elétrica no sentido convencional: no gerador entra pelo pólo negativo (B) e sai pelo pólo positivo (A). Seja i a intensidade da corrente e U a diferença de 
potencial (ddp) entre os pólos A (positivo) e B (negativo). Seja Δq a carga elétrica que atravessa a lâmpada ou o motor elétrico no intervalo de tempo Δt. A energia elétrica que estes elementos consomem, que é a energia elétrica fornecida pelo gerador, é dada pelo trabalho da força elétrica no deslocamento de A até B:

Eel = τAB = Δq.(VA - VB) = Δq.U
De P = Eel/Δt, vem: P = (Δq.U)/Δt. Mas sendo Δq/Δt = i, resulta:

xxxxxxxxxxxxxxxxxxxxxxxxP = U.i

P => watt (W)
U => volt (V)
i => ampère (A)
 

Exercícios básicos 

Exercício 1:
Uma lâmpada de potência 60 W fica acesa durante 10 h por dia.

a) Qual é a energia elétrica, em kWh, que a lâmpada consome em um mês (30 dias)?
b) Sabendo-se que o preço de 1 kWh de energia elétrica é de R$ 0,40, qual é o custo mensal da energia elétrica consumida pela lâmpada?
c) Sendo de 127 V a ddp aplicada à lâmpada, qual é a intensidade da corrente elétrica que a atravessa?


Resolução: clique aqui 

Exercício 2:
Vamos supor que num dia frio você coloca a chave seletora do seu chuveiro elétrico na posição "inverno". Considere que a potência elétrica do chuveiro seja de 5.600 W e que
seu banho tenha a duração de 15 minutos.

a) Calcule a energia elétrica consumida durante o banho.
 b) Qual é o custo da energia elétrica consumida durante o banho. Considere que 1
xkWh custa R$ 0,40.
 c) Considerando que em sua casa morem quatro pessoas, que tomam um banho por dia, de 15 minutos cada, com a chave na posição inverno, qual é o gasto mensalx(30 dias)?
d) Passando a chave seletora para a posição "verão", a potência do chuveiro diminui para 3.200 W. Considerando ainda a casa com 4 pessoas, tomando um banho diário de 15 minutos
cada, qual será a economia durante um mês na "conta de luz"? O preço de 1 kWh continua R$ 0,40.

Resolução: clique aqui  

Exercício 3:
Quantas horas uma lâmpada de 60 W poderia ficar acessa se consumisse a mesma energia elétrica de um chuveiro elétrico de potência 4.500 W, durante um banho de 20 minutos?

Resolução: clique aqui  

Exercício 4: 
O medidor de energia elétrica 
O medidor de energia elétrica de uma residência, comumente chamado de "relógio de luz", é constituído de quatro reloginhos, conforme está esquematizado abaixo.

Clique para ampliar

A leitura deve ser feita da esquerda para a direita. O primeiro reloginho indica o milhar e os demais fornecem, respectivamente, a centena, a dezena e a unidade. A medida é expressa em kWh. A leitura é sempre o último número ultrapassado pelo ponteiro no seu sentido de rotação. O sentido de rotação é o sentido crescente da numeração.

a) qual é a leitura do medidor representado acima? 
b) Vamos supor que após um mês da medida efetuada, o funcionário da companhia de energia elétrica retorna à residência e realiza uma nova leitura, com os ponteiros assumindo as
posições indicadas abaixo. Qual é a leitura neste nova situação?

Clique para ampliar

c) Qual foi o consumo de energia elétrica no mês em questão?


Resolução: clique aqui

Exercício 5:
Quem consome mais energia elétrica: uma lâmpada de 100 W que fica ligada 0,5 h ou um liquidificador de 450 W que fica ligado durante 8 minutos?

Resolução: clique aqui

terça-feira, 15 de junho de 2021

Termologia, Óptica e Ondas - Aula 17

Motorzinho a vapor: a água aquecida entra em ebulição. O vapor de água produzido incide nas pás, girando a turbina.

17ª aula
Termodinâmica (II)

Borges e Nicolau


Vamos revisar a aula passada e relembrar que no diagrama p x V a área é numericamente igual ao trabalho trocado pelo gás. 

A área A é numericamente igual ao trabalho τ na transformação A => B

Recordemos ainda que:

xxxxxxxxxxxxxxV aumenta = > τ > 0: o gás realiza trabalho
xxxxxxxxxxxxxxV diminui = > τ < 0: o gás recebe trabalho
xxxxxxxxxxxxxxV constante: τ = 0


Nesta semana vamos fazer algumas considerações sobre energia interna e enunciar a primeira lei da Termodinâmica.


Energia Interna U de um sistema

É a soma das várias formas de energia das moléculas que constituem o sistema. Na energia interna incluem-se, por exemplo, a energia cinética de translação e rotação das moléculas, a energia cinética devida ao movimento dos átomos que formam as moléculas, a energia potencial de ligação das moléculas.

Para um gás perfeito monoatômico a energia interna U é a energia cinética de translação de suas moléculas:

xxxxxxxxxxxxxxU =
Ec
xxxxxxxxxxxxxxU = (3/2).n.R.T
c
xxxxxxxxxxxxxxΔU = (3/2).n.R.ΔT
xxxxxxxxxxxxxx
Para um determinado número de mols de um gás perfeito, quando a temperatura aumenta a energia interna aumenta e a variação de energia interna é positiva. Quando a temperatura diminui a energia interna diminui e a variação de energia interna é negativa. Numa transformação isotérmica, a temperatura é constante, a energia interna é constante e a variação de energia interna é nula.
Resumindo:

xxxxxxxxxxxxxxT aumenta, U aumenta, ΔU > 0
xxxxxxxxxxxxxxT
diminui, U diminui, ΔU < 0
xxxxxxxxxxxxxxT
constante, U constante, ΔU = 0
c
xxxxxxxxxxxxxxNum ciclo:
c
xxxxxxxxxxxxxxT
inicial = Tfinal, Uinicial = Ufinal, ΔU = 0

Observação: se o gás não for monoatômico, outras formas de energia devem ser levadas em conta como, por exemplo, a energia cinética de rotação das moléculas.
Nestas condições, teremos U > (3/2).n.R.T


Primeira Lei da Termodinâmica

É o princípio da conservação da energia aplicado à Termodinâmica.
Imagine que um gás receba uma quantidade de calor igual Q = 200 J. Vamos supor que o gás se expanda e realize um trabalho τ = 120 J.


Os 80 J restantes ficam armazenados no gás, aumentando sua energia interna (ΔUx=x80 J). As três formas de energia, Q,  τ  e ΔU relacionam-se, constituindo a primeira lei da Termodinâmica:

xxxxxxxxxxxxxxQ = τ  + ΔU

Nos dois resumos anteriores analisamos os sinais de τ  e ΔU. Para a quantidade de calor Q, temos:

xxxxxxxxxxxxxxQ > 0: quantidade de calor recebida pelo gás
xxxxxxxxxxxxxxQ < 0: quantidade de calor cedida pelo gás
xxxxxxxxxxxxxxQ = 0: o gás não troca calor com o meio exterior xxxxxxxxxxxxxx(transformação adiabática).


Animação:
Termodinâmica - Noções básicas
Clique aqui

Exercícios básicos

Exercício 1:
Numa transformação isocórica, uma determinada massa de gás recebe a quantidade de calor igual a 1000 J.

a) Determine o trabalho que o gás troca com o meio exterior e a correspondente variação de energia interna.
b) Como se modificariam as respostas anteriores se o gás cedesse uma quantidade de calor de módulo 1000 J?

Resolução: clique aqui


Exercício 2:
Numa transformação isotérmica, uma determinada massa de gás recebe a quantidade de calor igual a 1000 J.

a) Determine o trabalho que o gás troca com o meio exterior e a correspondente variação de energia interna.
b) Como se modificariam as respostas anteriores se o gás cedesse uma quantidade de calor de módulo 1000 J?

Resolução:
clique aqui

Exercício 3:
Numa transformação isobárica, 2 mols de um gás perfeito monoatômico recebem uma certa quantidade de calor e consequentemente sua temperatura varia de 300 K a 400 K. Determine:
x

a) o trabalho que o gás troca com o meio exterior;
b) a correspondente variação de energia interna;
c) a quantidade de calor recebida
Dado: R = 8,31 J/mol.K 


Resolução: clique aqui

Exercício 4:
Numa transformação adiabática, uma determinada massa de gás realiza sobre o meio exterior um trabalho de 1000 J.


a) Determine a quantidade de calor  que o gás troca com o meio exterior e a correspondente variação de energia interna.
b) Como se modificariam as respostas anteriores se o gás recebesse do meio exterior um trabalho de módulo 1000 J?


Resolução: clique aqui

Exercício 5:
Um gás sofre uma compressão ou uma expansão muito rápida. Sendo o intervalo de tempo no qual ocorre a transformação muito pequeno não há tempo para o gás trocar calor com o meio exterior. Nestas condições, a transformação é considerada adiabática.


a) Analise o que ocorre, numa compressão adiabática, com a temperatura T, a energia interna U e a pressão p, dizendo se estas grandezas aumentam ou diminuem? Cite exemplos do dia a dia onde ocorre tal transformação.
b) Analise o que ocorre, numa expansão adiabática, com a temperatura T, a energia interna U e a pressão p, dizendo se estas grandezas aumentam ou diminuem? Cite exemplos do dia a dia onde ocorre tal transformação.


Resolução: clique aqui