Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

terça-feira, 28 de fevereiro de 2017

Cursos do Blog - Termologia, Óptica e Ondas

Tubo capilar contendo álcool com corante, antes e após o aquecimento

4ª aula
Dilatação térmica dos líquidos

Borges e Nicolau

Considere um frasco de capacidade V0 completamente cheio de um líquido à temperatura θ1. Aquecendo-se o conjunto até a temperatura θ2, parte do líquido transborda.


O volume transbordado não mede a dilatação real (ΔVr) que o líquido sofre e sim a dilatação aparente (ΔVap), uma vez que o frasco também se dilata (ΔVf).

Assim, temos:

ΔVr = ΔVap + ΔVf (1)
Mas ΔVr = V0 . γr . Δθ
Mas ΔVap = V0 . γap . Δθ
Mas ΔVf = V0 . γf . Δθ

γr - coeficiente de dilatação volumétrica real do líquido
γap - coeficiente de dilatação volumétrica aparente do líquido
γf - coeficiente de dilatação cúbica ou volumétrica do frasco

De (1), resulta: γr = γap + γf ou γap = γr - γf.
O coeficiente de dilatação aparente depende do líquido e do frasco.

Dilatação anômala da água

A água líquida contrai-se ao ser aquecida de 0 ºC a 4 ºC e dilata-se quando aquecida a partir de 4 ºC. Assim, a 4 ºC o volume de dada massa de água é mínimo e a densidade é máxima.


Exercícios básicos
 

Exercício 1:
Um frasco completamente cheio de um líquido é aquecido e sua temperatura passa de θ1 para θ2. Três situações, apresentadas na coluna da esquerda, podem ocorrer. Faça a associação entre as colunas da esquerda e da direita:

I) O líquido se dilata mais do que o frasco xxxxxxA) γap = 0
II) O líquido se dilata menos do que o frasco xxxxB) γap < 0
III) O líquido e o frasco se dilatam igualmente xxC) γap > 0 

Resolução: clique aqui

Exercício 2:
Um frasco de capacidade 1000 cm3 está completamente cheio de mercúrio cujo coeficiente de dilatação volumétrica (real) é igual a 1,8.10-4 ºC-1. O conjunto é aquecido de 20 ºC a 100 ºC e ocorre o transbordamento de 4,0 cm3. Determine o coeficiente de dilatação cúbica do frasco.

Resolução: clique aqui

Exercício 3:
Um motorista colocou combustível no tanque (50 L) de seu carro, pela manhã, quando a temperatura era de 22 ºC. Deixou o carro num estacionamento e ao retira-lo à tarde, quando os termômetros indicavam 32 ºC, notou o derramamento de combustível. Sendo o coeficiente de dilatação cúbica do material que constitui o tanque igual a 60.10-6 ºC-1 e 9,0.10-4 ºC-1 o coeficiente de dilatação volumétrica do combustível, determine o volume de combustível que extravasou.

Resolução: clique aqui

Exercício 4:
Os tanques dos postos de combustíveis são convenientemente isolados, de modo que o efeito da dilatação térmica não seja apreciável. Se tal não ocorresse no período mais quente do dia a densidade do combustível seria menor do que no período mais frio. Considerando-se que a massa é o que mais interessa na utilização do combustível, em que período seria mais vantajoso abastecer o carro?

Resolução: clique aqui

Exercício 5:
Determinada massa de água é aquecida de 0 ºC a 10 ºC. Analise o que ocorre com o volume de água e com sua densidade. 

Resolução: clique aqui 

Exercícios de Revisão 

Revisão/Ex 1: 
(U. Mackenzie–SP)
Quando um recipiente totalmente preenchido com um líquido é aquecido, a parte que transborda representa sua dilatação __________ . A dilatação __________ do líquido é dada pela __________ da dilatação do frasco e da dilatação __________ . Com relação à dilatação dos líquidos, assinale a alternativa que, ordenadamente, preenche de modo correto as lacunas do texto acima.

a) aparente — real — soma — aparente
b) real — aparente — soma — real 
c) aparente — real — diferença — aparente
d) real — aparente — diferença — aparente
e) aparente — real — diferença — real


Resolução: clique aqui 

Revisão/Ex 2: 
(ENEM)
A gasolina é vendida por litro, mas em sua utilização como combustível, a massa é o que importa. Um aumento da temperatura do ambiente leva a um aumento no volume da gasolina. Para diminuir os efeitos práticos dessa variação, os tanques dos postos de gasolina são subterrâneos. Se os tanques não fossem subterrâneos:

I. Você levaria vantagem ao abastecer o carro na hora mais quente do dia pois estaria comprando mais massa por litro de combustível.
II. Abastecendo com a temperatura mais baixa, você estaria comprando mais massa de combustível para cada litro.
III. Se a gasolina fosse vendida por kg em vez de por litro, o problema comercial decorrente da dilatação da gasolina estaria resolvido.

Destas considerações, somente:

a) I é correta.              d) I e II são corretas.
b) II é correta.             e) II e III são corretas.  
c) III é correta.      


Resolução: clique aqui  

Revisão/Ex 3:
(ITA-SP)
Um pequeno tanque, completamente preenchido com 20,0 L de gasolina a 0 °F, é logo a seguir transferido para uma garagem mantida à temperatura de 70 °F. 

Sendo  γ = 0,0012 ºC-1 o coeficiente de expansão volumétrica da gasolina, a alternativa que melhor expressa o volume de gasolina que vazará em consequência do seu aquecimento até a temperatura da garagem é:

a) 0,507 L         b) 0,940 L        c) 1,68 L        d) 5,07 L         e) 0,17 L


Resolução: clique aqui 

Revisão/Ex 4:
(UFTM)
Uma garrafa aberta está quase cheia de um determinado líquido. Sabe-se que se esse líquido sofrer uma dilatação térmica correspondente a 3% de seu volume inicial, a garrafa ficará completamente cheia, sem que tenha havido transbordamento do líquido.



Desconsiderando a dilatação térmica da garrafa e a vaporização do líquido, e sabendo que o coeficiente de dilatação volumétrica do líquido é igual a 6.10
-4 ºC-1, a maior variação de temperatura, em ºC, que o líquido pode sofrer, sem que haja transbordamento, é igual a

(A) 35.
(B) 45.
(C) 50.
(D) 30.
(E) 40.


Resolução: clique aqui 

Revisão/Ex 5:
(U. Mackenzie-SP)
Diz um ditado popular: "A natureza é sábia". De fato! Ao observarmos os diversos fenômenos da natureza, ficamos encantados com muitos pormenores, sem os quais não poderíamos ter vida na face da Terra, conforme a conhecemos. Um desses pormenores, de extrema importância, é o comportamento anômalo da água, no estado líquido, durante seu aquecimento ou resfriamento sob pressão normal. Se não existisse tal comportamento, a vida subaquática nos lagos e rios, principalmente das regiões mais frias de nosso planeta, não seria possível. Dos gráficos abaixo, o que melhor representa esse comportamento anômalo é







Resolução: clique aqui
c
Desafio:

O volume de um frasco de vidro, até certa marca do gargalo, é de 100,00 cm3. O frasco está cheio, até essa marca, com um líquido de coeficiente de dilatação volumétrica 1,5.10-3 °C-1. O coeficiente de dilatação linear do vidro é 2,0.10-5 °C-1. O frasco e o líquido estão inicialmente a 25°C. A área da seção reta do gargalo é considerada constante e igual a 3,6 cm2.


Aquece-se o sistema que passa de 25°C a 45°C.


a) Responda e justifique, o nível do líquido sobe ou desce de um valor h no gargalo?
b) Qual é o valor de h?


A resolução será publicada na próxima terça-feira.

Resolução do desafio anterior: 


O coeficiente de dilatação linear de um determinado material na escala Celsius é 2,7.10-5 °C-1. Na escala Fahrenheit, este coeficiente de dilatação linear, é igual a:

a) 1,2.10-5 °F-1
b) 1,5.10-5 °F-1
c) 1,8.10-5
°F-1
d) 2,1.10-5
°F-1
e) 2,4.10-5
°F-1


αC = ΔL/(L0.ΔθC) (1)
αF = ΔL/(L0.ΔθF) (2)
(1)/(2)
αC/αF = ΔθF/ΔθC)
2,7.10-5/αF = 9/5 => αF = 1,5.10-5 °F-1

Resposta: b

segunda-feira, 27 de fevereiro de 2017

Cursos do Blog - Mecânica

No instante em que o caminhão cruza com o carro escuro seus espaços são iguais, isto é, neste instante eles estão passando pelo mesmo marco quilométrico.

4ª aula
Movimento Uniforme (II)

Borges e Nicolau

Quando resolvemos exercícios de Cinemática precisamos, muitas vezes, escrever as funções horárias dos móveis estudados. Algumas grandezas envolvidas são arbitrárias e dependem de nossa escolha.

Origem dos espaços

Ponto da trajetória a partir do qual medimos os comprimentos que indicam as posições dos móveis. Sua escolha é livre e uma vez fixada será referência para todos os móveis.

Origem dos tempos (t = 0)

Corresponde ao instante em que o cronômetro é disparado.

Orientação da trajetória

Definida a origem dos espaços deve ser escolhida a orientação da trajetória. Com isso ficam determinados os sinais das velocidades escalares. Os móveis que caminham no sentido da orientação da trajetória têm velocidade escalar positiva e os que caminham no sentido oposto, velocidade escalar negativa.

Funções horárias

Tomadas as providências acima, podemos escrever as funções horárias lembrando que no movimento uniforme são do tipo s = s0 + v.t, onde:
s0 = Espaço inicial. Espaço do móvel no instante t = 0.
v = velocidade escalar.

Exemplo:

Dois móveis, A e B, distam 400 km. Sabendo-se que partem no mesmo instante e caminham em sentidos opostos, depois de quanto tempo se encontrarão? O móvel A tem velocidade de módulo igual a 60 km/h e o móvel B, 40 km/h. A que distância do ponto de partida do móvel A ocorre o encontro entre os móveis?


Resolução:

Escolhemos a origem dos espaços no ponto de partida do móvel A.
Orientamos a trajetória de A para B. (Escolha arbitrária, poderíamos ter escolhido a origem no ponto de partida de B e orientado a trajetória
de B para A. O resultado seria o mesmo.)


O espaço inicial de A é igual a zero. s0A = 0.
O espaço inicial de B é igual a 400 km. s0B = 400 km.
A velocidade escalar de A é positiva. vA = 60 km/h.
A velocidade escalar de B é negativa. vB = -40 km/h.

Com esses dados escrevemos as funções horárias dos móveis A e B:

sA = s0A + vAt
sA = 0 + 60t
sB = s0B + vBt
sB = 400 – 40t

No instante do encontro os móveis têm espaços iguais.

sA = sB
60t = 400 – 40t
100t = 400
t = 4 h
Os móveis encontram-se 4 h após a partida.

Local do encontro:

Substituindo-se t = 4 h na função horária do móvel A, temos:
sA = 60.4
sA = 240 km
O encontro se dá a 240 km do ponto de partida do móvel A.

Velocidade escalar relativa

O instante do encontro poderia ser obtido por velocidade escalar relativa. Nesse caso o móvel B seria tomado com referencial e o módulo da velocidade escalar do móvel A, em relação a B, passaria a ser a soma dos módulos das velocidades dos móveis A e B, em relação ao solo.
Assim vrelat = (60 + 40) km/h, vrelat = 100 km/h.
vrelat = distância inicial entre os móveis/intervalo de tempo do encontro (t)
100 = 400/t
t = 4 h

Nota: Quando os móveis deslocam-se em sentidos opostos o módulo da velocidade escalar relativa é a soma dos módulos das velocidades escalares. Quando os móveis deslocam-se no mesmo sentido o módulo da velocidade escalar relativa é a diferença dos módulos das velocidades escalares.

Exercícios básicos

Exercício 1:
Dois automóveis, A e B, percorrem trajetórias retas e paralelas com velocidades de módulos 50 km/h e 80 km/h, em relação ao solo. Qual é o módulo da velocidade escalar do carro B, em relação ao carro A. Analise os casos:
a) A e B deslocam-se no mesmo sentido.

                                  A                                          B

b) A e B deslocam-se em sentidos opostos.

                                 A                                           B

Resolução: clique aqui

Exercício 2:

Dois trens T1 e T2 percorrem trajetórias retas, paralelas e no mesmo sentido. O trem T1 tem comprimento igual a 300 m e velocidade constante de módulo 90 km/h. O trem T2 tem comprimento igual a 150 m e velocidade constante de módulo 72 km/h. Determine:
a) O intervalo de tempo necessário para que o trem T1 ultrapasse o trem T2.
b) A distância percorrida pelo trem T1 durante a ultrapassagem.

Resolução: clique aqui

Exercício 3:
Resolva o exercício anterior considerando que os trens se desloquem em sentidos contrários.

Resolução: clique aqui

Exercício 4:
Dois carros, A e B, partem de São Paulo com destino a Mairiporã, desenvolvendo em todo trajeto movimentos uniformes de mesma velocidade de módulo 60 km/h. O carro A partiu 20 minutos antes do que o carro B. Um carro C parte de Mairiporã com destino a São Paulo, também realizando movimento uniforme. O carro C cruza com o carro A e 12 minutos depois cruza com o carro B. Determine o módulo da velocidade do carro C. 

Resolução: clique aqui

Exercício 5:
Dois estudantes Pedro e Raphael realizam uma experiência visando determinar, numa rodovia, a velocidade escalar de um carro que realiza um movimento retilíneo e uniforme.


Pedro está provido de um apito e Raphael de um cronômetro. Os estudantes ficam à distância D = 170 m e no instante em que o carro passa por Pedro ele aciona o apito. Ao ouvir o som do apito, Raphael dispara o cronômetro e o trava no instante que o carro passa por ele. O cronômetro registra 6,3 s. Qual é a velocidade do carro? Sabe-se que a velocidade do som é de 340 m/s.

Resolução: clique aqui

Exercícios de Revisão 

Revisão/Ex 1: 
(UFGD)
De duas cidades A e B, separadas por 300 km, partem dois carros no mesmo instante e na mesma direção, porém em sentidos opostos, conforme a figura a seguir. Os dois carros estão em movimento retilíneo uniforme. O carro da cidade A parte com velocidade inicial de 20 m/s; o carro da cidade B, 30 m/s. A distância da cidade A, quando os dois carros se cruzam, é? 



(A) 120 km
(B) 150 km
(C) 180 km
(D) 200 km
(E) 100 km 


Resolução: clique aqui

Revisão/Ex 2: 
(ETEC-SP)
O Sol, responsável por todo e qualquer tipo de vida em nosso planeta, encontra-se, em média, a 150 milhões de quilômetros de distância da Terra. Sendo a velocidade da luz 3.105 km/s pode-se concluir que, a essa distância, o tempo gasto pela irradiação da luz solar, após ser emitida pelo Sol até chegar ao nosso planeta é, em minutos, aproximadamente,
 

(A) 2.
(B) 3.
(C) 5.
(D) 6.
(E) 8.


Resolução: clique aqui 

Revisão/Ex 3:
(IJSO)
O intervalo de tempo entre você ouvir o relâmpago e ver o trovão é
Δt segundos. Dado que a velocidade do som é de 340 m/s e a velocidade da luz no vácuo é
3.108 m/s, então a distância aproximada em quilômetros entre você e o relâmpago é de:

A.  
Δt/2
B.  
Δt/3
C.  
Δt/4
D.  
Δt/5

Resolução: clique aqui

Revisão/Ex 4:
(UEMG)
Dois corpos movimentam-se com velocidade constante na mesma direção, mas em sentidos contrários, afastando-se um do outro. O corpo A tem uma velocidade de 4,0 m/s e o B, de 6,0 m/s. Num certo instante a distância entre eles é de 250 m.
Assinale a alternativa que apresenta o valor da distância entre eles imediatamente após 10 s do instante citado.

A)   150 m.
B)   350 m.
C)   250 m.
D)   100 m.


Resolução: clique aqui

Revisão/Ex 5
(UCG-GO)
A figura abaixo mostra a posição de um móvel, em movimento uniforme, no instante t = 0. Sendo 5,0 m/s o módulo de sua velocidade escalar, pede-se:



a) a função horária dos espaços;
b) o instante em que o móvel passa pela origem dos espaços.


Resolução: clique aqui

Desafio:

Dois móveis, 1 e 2, percorrem os lados AB e BC de uma pista em forma de um triângulo, como mostra a figura abaixo. Eles realizam movimentos uniforme e partem no mesmo instante de A e B, respectivamente. O móvel 2 atinge o vértice C 30 segundos depois do móvel 1. A velocidade escalar do móvel 1 tem módulo 10 m/s. Determine o módulo da velocidade escalar do móvel 2.
Dados: sen 30° = 1/2;  sen 45° = √2/2 e BC = 100.
2 m


A resolução será publicada na próxima segunda-feira.
  

Resolução do desafio anterior:

De São Paulo a Jundiaí, com intervalo de tempo de 10 min, partem dois automóveis. Eles realizam movimentos uniformes com velocidade 30 km/h. Um outro automóvel que parte de Jundiaí encontra os dois primeiros automóveis em um intervalo de 4 min, um depois do outro, com velocidade constante. Determine o módulo desta velocidade.

Vamos inicialmente determinar a distância, ao longo da estrada, entre os dois primeiros automóveis, que partem de São Paulo, sendo 10min = (1/6)h

v = Δs/Δt => 30km/h = Δs/(1/6)h => Δs = 5 km/h

Assim, o automóvel que parte de Jundiaí encontra os dois automóveis, percorrendo 5 km em 4 min = (4/60)h. Portanto, sua velocidade constante tem módulo:


v = Δs/Δt => v = 5km/(4/60)h => v = 75 km/h