Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

quarta-feira, 31 de julho de 2019

Cursos do Blog - Eletricidade

Foto: www.africa21online.com

20ª aula
Associação de Resistores

Borges e Nicolau

Resumo:
Vimos nas aulas anteriores o conceito de resistor, a lei de Ohm, a potência dissipada por um resistor e a grandeza resistividade.

Resistor é um elemento de circuito que consome energia elétrica e a transforma em energia térmica. Dizemos que um resistor dissipa energia elétrica.

Os resistores são utilizados como aquecedores em chuveiros elétricos, torneiras elétricas, ferros de passar roupa, torradeiras elétricas, etc. Eles são também usados para limitar a intensidade da corrente elétrica que passa por determinados componentes eletrônicos. É claro que nestas utilizações a finalidade não é dissipar energia elétrica, como ocorre nos aquecedores.

Lei de Ohm 

Mantida a temperatura constante, a ddp aplicada a um resistor é diretamente proporcional à intensidade da corrente elétrica que o atravessa. 

U = R . i 

Clique para ampliar

Os resistores que obedecem a Lei de Ohm são denominados resistores ôhmicos.

Gráfico U x i (curva característica)

Para um resistor ôhmico o gráfico da ddp U em função da intensidade da corrente elétrica i é uma reta inclinada em relação aos eixos passando pela origem:

Clique para ampliar

Potência elétrica dissipada por um resistor

P = U.i
 

P = R.i2

P = U2/R

Resistividade
 

R = ρ.L/A

A constante de proporcionalidade ρ depende do material que constitui o resistor e da temperatura, sendo denominada resistividade do material.
 

a) Associação em série

Clique para ampliar

Entre os terminais A e B vamos aplicar uma ddp U. É possível substituir toda associação por um só resistor que produz o mesmo efeito. É o resistor equivalente.

Na associação em série:

1) Todos os resistores são percorridos pela mesma intensidade de corrente i, inclusive o equivalente.

2) A ddp em cada resistor é diretamente proporcional à sua resistência elétrica:
xxxxxxxxxxxxxxx U1 = R1.i
xxxxxxxxxxxxxxx U2 = R2.i
xxxxxxxxxxxxxxx U3 = R3.i

3) A potência elétrica dissipada em cada resistor é diretamente proporcional à sua resistência elétrica:
xxxxxxxxxxxxxxx P1 = R1.i2
xxxxxxxxxxxxxxx P2 = R2.i2
xxxxxxxxxxxxxxx P3 = R3.i2

4) A ddp total é a soma das ddps parciais:
xxxxxxxxxxxxxxx U = U1 + U2 + U3

5) A resistência equivalente é igual à soma das resistências associadas
xxxxxxxxxxxxxxx RS = R1 + R2 + R3

b) Associação em paralelo

Clique para ampliar

Na associação em paralelo:

1) Todos os resistores são submetidos à mesma ddp U, inclusive o equivalente.

2) A intensidade da corrente que percorre cada resistor é inversamente  proporcional à sua resistência elétrica:
xxxxxxxxxxxxxxx i1 = U/R1
xxxxxxxxxxxxxxx i2 = U/R2
xxxxxxxxxxxxxxx i3 = U/R3

3) A potência elétrica dissipada em cada resistor é inversamente proporcional à sua resistência elétrica:
xxxxxxxxxxxxxxx P1 = U2/R1
xxxxxxxxxxxxxxx P2 = U2/R2
xxxxxxxxxxxxxxx P3 = U2/R3

4) A intensidade da corrente total é a soma das intensidades das correntes nos resistores associados:
xxxxxxxxxxxxxxx i = i1 + i2 + i3

5) O inverso da resistência equivalente é igual à soma dos inversos das resistências associadas:
xxxxxxxxxxxxxxx 1/RP = 1/R1 + 1/R2 + 1/R3

Exercícios básicos

Exercício 1:
Considere a associação de resistores esquematizada abaixo e submetida a uma ddp de 24 V.


Determine:
a) a resistência equivalente entre os terminais A e B;
b) a intensidade da corrente que percorre cada resistor;
c) a ddp em cada resistor;
d) qual resistor dissipa a maior potência.


Resolução: clique aqui

Exercício 2:
Considere a associação de resistores esquematizada abaixo e submetida a uma ddp de 24 V.


Determine:
a) a resistência equivalente entre os terminais A e B;
b) a  ddp em cada resistor;
c) a intensidade da corrente que percorre cada resistor;
d) qual resistor dissipa a maior potência. 

Resolução: clique aqui 

Determine a resistência equivalente entre os terminais A e B, das associações esquematizadas abaixo. Dê as respostas em função de R.

Exercício 3:
 

Resolução: clique aqui

Exercício 4:


Resolução: clique aqui

Exercício 5:


Resolução: clique aqui

Exercício 6:


Resolução: clique aqui

Exercício 7:


Resolução: clique aqui

Exercícios de revisão

Revisão/Ex 1:
(UNEMAT)
Considere o circuito elétrico abaixo.



Assinale a alternativa INCORRETA.


a. A resistência equivalente à associação é de 6
Ω
b. A potência dissipada pela associação é de 24 watts.
c. A ddp (diferença de potencial) em
R1 é menor que a ddp em R2.
d. As resistências elétricas
R1 e R2 serão percorridas pela mesma corrente elétrica, cujo valor é de 2 A.
e. A potência dissipada no resistor
R1 é maior que a potência dissipada em R2.

Resolução: clique aqui 

Revisão/Ex 2:
(UFAL)
No circuito elétrico a seguir, a corrente elétrica no resistor ôhmico de resistência 1
Ω vale:


A) 1 A
B) 2 A
C) 3 A
D) 4 A
E) 5 A


Resolução: clique aqui

Revisão/Ex 3:
(Unifesp)
Os circuitos elétricos A e B esquematizados, utilizam quatro lâmpadas incandescentes L idênticas, com especificações comerciais de 100 W e de 110 V, e uma fonte de tensão elétrica de 220 V. Os fios condutores, que participam dos dois circuitos elétricos, podem ser considerados ideais, isto é, têm suas resistências ôhmicas desprezíveis.



a) Qual o valor da resistência ôhmica de cada lâmpada e a resistência ôhmica equivalente de cada circuito elétrico?
b) Calcule a potência dissipada por uma lâmpada em cada circuito elétrico, A e B, para indicar o circuito no qual as lâmpadas apresentarão maior iluminação.


Resolução: clique aqui

Revisão/Ex 4:
(UNESP)
Três resistores, de resistências elétricas R
1, R2 e R3, um gerador G e uma lâmpada L são interligados, podendo formar diversos circuitos elétricos. Num primeiro experimento, foi aplicada uma tensão variável V aos terminais de cada resistor e foi medida a corrente i que o percorria, em função da tensão aplicada. Os resultados das medições estão apresentados no gráfico, para os três resistores.


Considere agora os circuitos elétricos das alternativas abaixo. Em nenhum deles a lâmpada L queimou. A alternativa que representa a situação em que a lâmpada acende com maior brilho é


Resolução: clique aqui

Revisão/Ex 5:
(UFLA-MG)
O circuito elétrico ao lado apresenta uma associação mista de lâmpadas incandescentes, com os valores de suas resistências elétricas considerados constantes. O circuito é alimentado por uma fonte ideal (resistência interna nula) de 148 V.



Calcule:


a) A corrente total cedida pela fonte ao circuito.
b) A corrente elétrica que alimenta a lâmpada de 30 Ω (L
2).
c) A lâmpada que apresenta maior luminosidade é aquela que dissipa maior potência. Mostre qual delas apresenta maior luminosidade.


Resolução: clique aqui
g
Desafio: 

Considere o circuito abaixo:


O fio AB é percorrido por uma corrente elétrica de intensidade:

a) 2,0 A e no sentido de A para B.
b) 2,0 A e no sentido de B para A.
c) 1,0 A e no sentido de A para B.
d) 1,0 A e no sentido de B para A.
e) nenhuma das alternativas anteriores.


A resolução será publicada na próxima quarta-feira.

terça-feira, 30 de julho de 2019

Cursos do Blog - Termologia, Óptica e Ondas

 
Foto: Nicolau G.Ferraro
 
20ª aula
Óptica Geométrica
x
Borges e Nicolau
x
A Óptica Geométrica estuda a propagação da luz nos diferentes meios e os fenômenos que dela decorrem: a reflexão e a refração. Este estudo é feito a partir da noção de raio de luz e de princípios fundamentais.
x
Raios de luz. Feixe de luz 

Para representar que a luz emitida pela chama de uma vela atinge a vista de um observador, utilizamos linhas orientadas que fornecem  a direção e o sentido de propagação da luz. Tais linhas são chamadas raios de luz.


Um conjunto de raios de luz é chamado feixe de luz. Este pode ser convergente, divergente ou de raios paralelos.


Meios transparentes, translúcidos e opacos
 

Os meios através dos quais os objetos podem ser vistos nitidamente são chamados transparentes. Ao atravessar um meio transparente a luz percorre trajetórias regulares e bem definidas. O ar atmosférico existente numa sala e a água em camadas pouco espessas, são exemplos de meios transparentes.
Os meios através dos quais os objetos não podem ser vistos nitidamente são chamados translúcidos. O papel de seda e o vidro fosco são exemplos de meios translúcidos. Ao atravessar um meio translúcido a luz percorre trajetórias irregulares e indefinidas.
Os meios que não permitem que a luz os atravesse são chamados opacos. É o caso de uma parede de concreto.
 

Observação: Um meio é homogêneo quando apresenta as mesmas propriedades em todos os seus pontos.

A velocidade de propagação da luz
 

Todas as luzes, monocromáticas (isto é, luzes de uma só cor) ou policromáticas (luzes constituídas pela superposição de luzes de cores diferentes, como a luz solar branca) propagam-se no vácuo com a mesma velocidade que é aproximadamente igual a 3,0.105 km/s.
Nos meios materiais homogêneos e transparentes a velocidade de propagação da luz é menor que no vácuo e seu valor depende da cor da luz que se propaga. Num meio material, a luz monocromática vermelha apresenta a maior velocidade de propagação e a violeta, a menor. As luzes das demais cores apresentam velocidades de propagação intermediárias. Na ordem decrescente de velocidade: luz vermelha, alaranjada, amarela, verde azul, anil e violeta.


Ano-Luz

Um ano-luz é a distância que a luz percorre no vácuo durante um ano terrestre. Vamos transformar em quilômetros o comprimento equivalente a um ano-luz.
Sendo c = 3,0.
105 km/s a velocidade de propagação da luz no vácuo e 
Δt = 1 ano terrestre = 365,2 dias = 365,2.24.3600 s 3,16.107 s, 
de d = c.Δt, vem: 
                                  
1 ano-luz = 3,0.
105 km/s.3,16.107 s
1 ano-luz
9,5.1012 km
 

Princípios da Óptica Geométrica

a) Princípio da propagação retilínea
 

Nos meios homogêneos e transparentes a luz se propaga em linha reta
 

b) Princípio da independência dos raios de luz
 

Quando raios de luz se cruzam, cada um segue sua propagação como se os outros não existissem
 

Observações: As leis da reflexão e refração são consideradas princípios no estudo da Óptica Geométrica. Estas leis serão analisadas nos próximos capítulos. 

Como decorrência dos princípios anteriores, podemos enunciar a reversibilidade da luz:
 

A trajetória seguida pela luz, não depende do sentido de propagação

Exercícios básicos
 

Exercício 1:
Analise as afirmações abaixo e indique as corretas:
a) O ar atmosférico de uma sala é um meio transparente.
b) A água em camadas espessas é um meio transparente.
c) O vidro fosco é um meio translúcido.
d) A atmosfera terrestre, cuja densidade diminui com o aumento da altitude, é um meio homogêneo.
e) Nos meios transparentes e translúcidos a luz se propaga em linha reta.

Resolução: clique aqui


Exercício 2:
Um ano-luz tem a dimensão de:
a) tempo; b) velocidade; c) aceleração; d) comprimento; e) energia.

Resolução: clique aqui

Exercício 3:
Uma estrela está situada a 4 anos-luz da Terra. Qual a distância entre a estrela e a Terra em quilômetros?
x
Resolução: clique aqui

Exercício 4:
O holofote A ilumina o artista situado no lado direito. Desliga-se A e liga-se o holofote B iluminando o artista situado no lado esquerdo. A seguir, ligam-se os dois holofotes e os feixes se cruzam. Os artistas ficam iluminados? Em que princípio da Óptica Geométrica você baseou sua resposta?



Resolução: clique aqui

Exercício 5:
Tem-se uma associação de espelhos planos. Um raio de luz incide no espelho
E1 e segue a trajetória ABCD, emergindo do espelho E2.


Represente a trajetória da luz que incide no espelho E2, segundo o raio DC. Em que fato da Óptica Geométrica você baseou sua resposta?


Resolução: clique aqui

Exercícios de revisão

Revisão/Ex 1:
(Uniube-MG)
Considere as proposições:

I. No vácuo, a luz propaga-se em linha reta.
II. Em quaisquer circunstâncias, a luz propaga-se em linha reta.
III. Nos meios transparentes e homogêneos, a luz propaga-se em linha reta.
IV. Para que a luz se propague em linha reta, é suficiente que o meio seja transparente.

Responda mediante o código:

a) Se somente I for correta
b) Se somente I e III forem corretas
c) Se somente II e III forem corretas
d) Se todas forem corretas
e) Se todas forem erradas.


Resolução: clique aqui 

Revisão/Ex 2:
(Unitau-SP)
Dois raios de luz, que se propagam num meio homogêneo e transparente, se interceptam num certo ponto. A partir deste ponto, pode-se afirmar que:

a) os raios luminosos se cancelam.
b) mudam a direção de propagação.
c) continuam se propagando na mesma direção e sentido que antes.
d) se propagam em trajetórias curvas.
e) retornam em sentido opostos.


Resolução: clique aqui

Revisão/Ex 3:
(PUC-Campinas-SP)
Andrômeda é uma galáxia distante 2,3.1
06 anos-luz da Via Láctea, a nossa galáxia. A luz proveniente de Andrômeda, viajando à velocidade de 3,0.105 km/s, percorre a distância aproximada até a Terra, em km, igual a:

a) 4.1
015.
b) 6.1
017.
c) 2.1
019.
d) 7.1
021.
e) 9.1
023.

Resolução: clique aqui

Revisão/Ex 4:
(UEL-PR)
Considere as seguintes afirmativas:

I. A água pura é um meio translúcido.
II. O vidro fosco é um meio opaco.
III. O ar é um meio transparente.

Sobre as afirmativas acima, assinale a alternativa correta:

a) apenas a afirmativa I é verdadeira.
b) apenas a afirmativa II é verdadeira.
c) apenas a afirmativa III é verdadeira.
d) apenas as afirmativas I e a III são verdadeiras.
e) apenas as afirmativas II e a III são verdadeiras.


Resolução: clique aqui

Revisão/Ex 5:
(FUVEST)
No mês de agosto de 1988, o planeta Marte teve a máxima aproximação da Terra. Nesse dia as pessoas, ao observarem o planeta, estavam vendo a luz emitida pelo Sol algum tempo antes. Aproximadamente quanto tempo antes? Considere as órbitas da Terra e de Marte circulares e coplanares, com raios de 150.000.000 km e 231.000.000 km, respectivamente.
Dado: velocidade da luz: 300.000 km/s.

a) 81 anos-luz
b) 2 horas
c) 30 segundos
d) 8 minutos
e) 17 minutos


Resolução: clique aqui
d
Desafio:
 

Considere a afirmação:

“A luz proveniente de uma estrela incide na atmosfera terrestre e, a partir daí, propaga-se, necessariamente, em linha reta até atingir a superfície da Terra”.

Esta afirmação está certa ou errada?


A resolução será publicada na próxima terça-feira

segunda-feira, 29 de julho de 2019

Mecânica - Aula 20 (continuação)

Exercícios de revisão 

Revisão/Ex 1:
(Vunesp)
Assinale a alternativa que apresenta o enunciado da Lei da Inércia, também conhecida como Primeira Lei de Newton.

a) Qualquer planeta gira em torno do Sol descrevendo uma órbita elíptica, da qual o Sol ocupa um dos focos.
b) Dois corpos quaisquer se atraem com uma força proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância entre eles.
c) Quando um corpo exerce uma força sobre outro, este reage sobre o primeiro com uma força de mesma intensidade e direção, mas de sentido contrário.
d) A aceleração que um corpo adquire é diretamente proporcional à resultante das forças que nele atuam, e tem mesma direção e sentido dessa resultante.
e) Todo corpo continua em seu estado de repouso ou de movimento uniforme em uma linha reta, a menos que sobre ele estejam agindo forças com resultante não nula.


Resolução: clique aqui 

Revisão/Ex 2:
(Vunesp)
As estatísticas indicam que o uso do cinto de segurança deve ser obrigatório para prevenir lesões mais graves em motoristas e passageiros no caso de acidentes. Fisicamente, a função do cinto está relacionada com a:

a) Primeira Lei de Newton;
b) Lei de Snell;
c) Lei de Ampère;
d) Lei de Ohm;
e) Primeira Lei de Kepler.


Resolução: clique aqui

Revisão/Ex 3:
(UFF)
Abaixo estão representadas as forças, de mesmo módulo, que atuam numa partícula em movimento, em três situações. É correto afirmar que a partícula está com velocidade constante:

a) apenas na situação 1
b) apenas na situação 2
c) apenas nas situações 1 e 3
d) apenas nas situações 2 e 3
e) nas situações 1,2 e 3.



Resolução: clique aqui

Revisão/Ex 4:
(PUC-SP)
No arremesso de peso, um atleta gira um corpo rapidamente e depois o abandona. Se não houver influência da Terra e desprezando a resistência do ar, a trajetória do corpo após abandonado pelo atleta seria:

a) circular.
b) parabólica.
c) curva qualquer.
d) retilínea.
e) espiral.


Resolução: clique aqui

Revisão/Ex 5:
(U.Uberaba-MG)
Coloca-se um cartão sobre um copo e uma moeda sobre o cartão. Puxando-se bruscamente o cartão, a moeda cai no copo.



O fato descrito ilustra:

a) inércia.
b) aceleração.
c) atrito.
d) ação e reação.
e) nenhuma das anteriores.


Resolução: clique aqui
e
Desafio:

De acordo com o princípio da inércia, um corpo livre da ação de forças ou está em repouso ou realiza movimento retilíneo uniforme. Considere agora o exemplo: um professor, após um dia de aulas, volta para sua casa, em seu carro. Entra no veículo e coloca seus livros no banco do passageiro. Ao se deslocar em uma avenida, em movimento uniforme, aproxima-se de um semáforo que passa do amarelo para o vermelho. Imediatamente o professor freia seu veículo e os livros são projetados para frente, em relação ao carro, sem a ação de forças. Este fato contraria o princípio da inércia?

A resolução será publicada na próxima quinta-feira

domingo, 28 de julho de 2019

Arte do Blog

Hoje apresentamos os trabalhos de um pintor brasileiro de origem africana, Artur Timóteo da Costa. Nascido de família humilde, em 1882, na cidade do Rio de Janeiro, em plena vigência da escravidão, não teve facilidade para alcançar sucesso na carreira.

Menino com legumes

Artur Timóteo da Costa

Artur Timóteo da Costa, pintor brasileiro nascido no Rio de Janeiro, Distrito Federal, cuja energia criadora lhe garantiu papel de relevo entre os precursores da orientação modernista. De origem humilde, irmão mais moço do também pintor carioca João Timóteo da Costa (1879-1930), conheceu muito novo o cenógrafo italiano Oreste Colliva, com quem passou a trabalhar, iniciando-se, pois, como aprendiz de cenógrafo, atividade que deixaria marcas nos efeitos teatrais observados em muitas de suas telas.

Navio encalhado na praia de Copacabana
x
Depois de cinco anos de atividades ligadas ao teatro, entrou para a Escola Nacional de Belas-Artes (1894), graças a indicação de Enes de Souza, diretor da Casa da Moeda do Rio de Janeiro, verdadeiro mecenas das artes e descobridor de talentos. Estudou com professores como Daniel Bérard, Zeferino da Costa, Rodolfo Amoedo e Henrique Bernardelli.

Estudo de cabeças

Em seu primeiro envio ao Salão (1905) passou desapercebido, mas no ano seguinte, com o quadro Antes da aleluia, ganhou o primeiro lugar e como prêmio uma viagem ao exterior. Do Salão Nacional de Belas-Artes seguiu para Paris, onde permaneceu algum tempo.

Dama em verde

Dedicou-se especialmente à pintura de retratos e de paisagens, com um vigor de expressão que muitas vezes ampliava o espectro de seu impressionismo básico. De temperamento agitado e rebelde, nunca se submeteu aos ditames bem-comportados da estética acadêmica, e morreu em 1923, no Hospício dos Alienados, no Rio de Janeiro, na mesma instituição em que morreu seu irmão João Timóteo.

Pintor no ateliê

Clique aqui para saber mais.

sábado, 27 de julho de 2019

Especial de Sábado

Olá pessoal. Com vocês a resolução deste exercício interessante proposto no vestibular da Universidade Federal do Paraná.


Pedalando rumo à vitória...

(UFPR)
Em uma prova internacional de ciclismo, dois dos ciclistas, um francês e, separado por uma distância de 15 m à sua frente, um inglês, se movimentam com velocidades iguais e constantes de módulo 22 m/s. Considere agora que o representante brasileiro na prova, ao ultrapassar o ciclista francês, possui uma velocidade constante de módulo 24 m/s e inicia uma aceleração constante de módulo 0,4 m/s2, com o objetivo de ultrapassar o ciclista inglês e ganhar a prova. No instante em que ele ultrapassa o ciclista francês, faltam ainda 200 m para a linha de chegada. Com base nesses dados e admitindo que o ciclista inglês, ao ser ultrapassado pelo brasileiro, mantenha constantes as características do seu movimento, assinale a alternativa correta para o tempo gasto pelo ciclista brasileiro para ultrapassar o ciclista inglês e ganhar a corrida.

a) 1 s.  
b) 2 s.  
c) 3 s.  
d) 4 s.  
e) 5 s.

Resolução:

No instante t = 0 temos a situação, de acordo com o enunciado:


Função horária do ciclista inglês (MU)


s = s0 + v.t => sI = 15 + 22.t

Função horária do ciclista brasileiro (MUV)


s = s0 + v.t + (α/2).t2 => sB = 0 + 24.t + (0,4/2).t2 

No instante em que o ciclista brasileiro ultrapassa o inglês, temos:

sI = sB => 15 + 22.t = 24.t + (0,4/2).t2 => 0,2.t2 + 2.t - 15 = 0
t = -2 ± √{[(2)2 - 4.0,2.(-15)]/(2.0,2)} = (-2 ± 4)/(2.0,2) =>

t = 5 s e t = -15 s
 
Resposta: e