Borges e Nicolau
Considere um móvel P lançado obliquamente com velocidade v0 nas proximidades da superfície terrestre. Seja θ o ângulo que v0 forma com a horizontal, denominado ângulo de tiro. Vamos desprezar a resistência do ar. O movimento de P pode ser considerado como a composição de dois movimentos, um horizontal Px e outro vertical Py.
Clique para ampliar
Componentes horizontal e vertical da velocidade inicial:
vx = v0.cos θ
v0y = v0.sen θ
Movimento vertical:
Lançamento vertical para cima (MUV) com velocidade v0y = v0.sen θ
y = v0y.t + (α/2).t2
vy = v0y + α.t
(vy)2 = (v0y)2+ 2.α.y
α = -g
(eixo orientado para cima)
Movimento horizontal: Uniforme com velocidade vx = v0.cos θ
x = vx.t
Cálculo do tempo de subida ts:
t = ts quando vy = 0 => vy = v0y - g.t => 0 = v0y - g.t
ts = v0y/g
Cálculo do alcance A:
x = A quando t = 2ts =>
A = vx.2ts
O tempo total do movimento é igual a 2ts pois os tempos de subida e de descida ts e td são iguais.
Altura máxima H:
y = H quando vy = 0 => (vy)2 = (v0y)2 - 2.g.y => 0 = (v0y)2 - 2.g.H
H = (v0y)2/2g
A velocidade resultante do móvel em cada instante é:
v = vx + vy
(Em negrito: notação vetorial)
(Em negrito: notação vetorial)
Exercícios básicos
Exercício 1:
Uma bola de tênis é lançada obliquamente de um ponto O com velocidade v0, de módulo 10 m/s, formando um ângulo θ com o solo horizontal, tal que sen θ = 0,6 e cos θ = 0,8.
Despreze a resistência do ar e adote g = 10 m/s2.
Clique para ampliar
Determine: vx, v0y, ts, A e H
Resolução: clique aqui
Exercício 2:
Uma bola de tênis é lançada obliquamente com velocidade v0 = 5 m/s de um local do solo, suposto horizontal. Determine o alcance A e a altura máxima H, nos casos:
a) O ângulo de tiro é θ = 30º;
a) O ângulo de tiro é θ = 60º.
Dados:
sen 30º = cos 60º = 0,5
sen 60º = cos 30º = √3/2
Resolução: clique aqui
Exercício 3:
Com base no exercício anterior, podemos concluir que, para a mesma velocidade de lançamento, a bola de tênis atinge o mesmo valor para __________________, pois os ângulos de tiro são __________________. As palavras que preenchem corretamente os espaços indicados são, respectivamente:
a) a altura máxima e suplementares;
b) a altura máxima e complementares;
c) o alcance e suplementares;
d) o alcance e complementares;
e) o tempo de subida e complementares.
Resolução: clique aqui
Exercício 4:
Um projétil é lançado obliquamente com velocidade inicial de módulo
20 m/s, formando ângulo θ com a horizontal, tal que sen θ = 0,8 e
cos θ = 0,6. Despreze a resistência do ar e adote g = 10 m/s2.
Determine:
a) o módulo da velocidade mínima atingida pelo projétil;
b) as componentes horizontal e vertical da velocidade e o módulo da velocidade resultante no instante t = 1 s.
Resolução: clique aqui
Exercício 5:
Num jogo de futebol o goleiro bate um tiro de meta e a bola é lançada de modo que as componentes horizontal e vertical de sua velocidade inicial sejam iguais a 10 m/s. Em sua trajetória a bola passa por dois pontos, A e B, situados a uma mesma altura hx=x3,2 m em relação ao gramado.
Considere que a bola está sob ação exclusiva da gravidade e seja gx=x10xm/s2.
a) o módulo da velocidade mínima atingida pelo projétil;
b) as componentes horizontal e vertical da velocidade e o módulo da velocidade resultante no instante t = 1 s.
Resolução: clique aqui
Exercício 5:
Num jogo de futebol o goleiro bate um tiro de meta e a bola é lançada de modo que as componentes horizontal e vertical de sua velocidade inicial sejam iguais a 10 m/s. Em sua trajetória a bola passa por dois pontos, A e B, situados a uma mesma altura hx=x3,2 m em relação ao gramado.
Considere que a bola está sob ação exclusiva da gravidade e seja gx=x10xm/s2.
a) Determine o intervalo de tempo decorrido entre as passagens pelos pontos A e B.
b) A distância entre A e B.
Resolução: clique aqui
Exercícios de revisão
O texto abaixo refere-se aos exercícios 1 e 2.
(PUC-SP) Um projétil é lançado em certa direção com velocidade inicial, cujas projeções vertical e horizontal têm módulos, respectivamente, de 100 m/s e 75 m/s. A trajetória descrita é parabólica e o projétil toca o solo horizontal em B.
Revisão/Ex 1:
Desprezando a resistência do ar:
a) no ponto de altura máxima, a velocidade do projétil é nula.
b) o projétil chega a B com velocidade nula.
c) a velocidade vetorial do projétil ao atingir B é igual à de lançamento.
d) durante o movimento há conservação das componentes horizontal e vertical da velocidade.
e) durante o movimento apenas a componente horizontal da velocidade é conservada.
Resolução: clique aqui
Revisão/Ex 2:
Quanto ao módulo da velocidade, tem valor mínimo igual a:
a) 125 m/s.
b) 100 m/s.
c) 75 m/s.
d) zero.
e) 25 m/s.
Resolução: clique aqui
Revisão/Ex 3:
(Mackenzie-SP)
Uma bola é chutada a partir de um ponto de uma região plana e horizontal, onde o campo gravitacional é considerado uniforme, segundo a direção vertical e descendente. A trajetória descrita pela bola é uma parábola, IgI = 10 m/s2 e a resistência do ar é desprezível.
Considerando os valores da tabela acima, conclui-se que o ângulo α de lançamento da bola foi, aproximadamente,
a) 15º b) 30º c) 45º d) 50º e) 75º
Resolução: clique aqui
Revisão/Ex 4:
(VUNESP)
O gol que Pelé não fez
Na copa de 1970, na partida entre Brasil e Tchecoslováquia, Pelé pega a bola um pouco ante do meio de campo, vê o goleiro tcheco adiantado, e arrisca um chute que entrou para a história do futebol brasileiro. No início do lance, a bola parte do solo com velocidade de 108 km/h (30 m/s), e três segundos depois toca novamente o solo atrás da linha de fundo, depois de descrever uma parábola no ar e passar rente à trave, para alívio do assustado goleiro.
Na figura vemos uma simulação do chute de Pelé.
Considerando que o vetor velocidade inicial da bola depois do chute de Pelé fazia um ângulo de 30º com a horizontal (sen 30º = 0,50 e cos 30º = 0,85) e desconsiderando a resistência do ar e a rotação da bola, pode-se afirmar que a distância horizontal entre o ponto de onde a bola partiu do solo depois do chute e o ponto onde ela tocou o solo atrás da linha de fundo era, em metros, um valor mais próximo de
a) 52,0. b) 64,5. c) 76,5. d) 80,4. e) 86,6.
Resolução: clique aqui
Revisão/Ex 5:
(UECE)
Uma bola é chutada da superfície de um terreno plano segundo um ângulo φ0 acima do horizontal.
Se θ é o ângulo de elevação do ponto mais alto da trajetória, visto do ponto de lançamento, a razão tg θ/tg φ0, desprezando-se a resistência do ar, é igual a
A) 1/4
B) 1/2
C) 1/6
D) 1/8
Resolução: clique aqui
g
Desafio:
Uma bola é colocada a 32 m de um prédio sobre o solo, considerado horizontal. Cada andar do prédio, incluindo o térreo, têm 3,0 m de altura. A bola é lançada com velocidade de módulo v0 = 20 m/s e que forma com a horizontal um ângulo θ, tal que sen θ = 0,60 e cos θ = 0,80, conforme indica a figura.
Sendo g = 10 m/s2, determine o andar que foi atingido pela bola.
A bola atingiu o prédio durante seu movimento de subida ou descida?
A resolução será publicada na próxima segunda-feira
Um projétil é lançado horizontalmente com velocidade v0 = 40 m/s de um local situado a 180 m do solo, suposto horizontal. Considere g = 10 m/s2 e despreze a ação do ar.
a) Determine o tempo de queda tq e a que distância d da vertical de lançamento o projétil atinge o solo.
b) Determine a que altura do solo se encontra o projétil no instante tq/2?
c) No instante tq/2 quais são as componentes vx e vy da velocidade do projétil e qual é o módulo de sua velocidade v?
a)
y = g.t2/2 => H = g.tq2/2 => 180 = 10.tq2/2 => tq = 6,0 s
x = v0.t => d = 40.6,0 => d = 240 m
b)
y = g.t2/2 => h = 10.(3,0)2/2 => h = 45 m
c)
vx = v0 = 40 m/s
vy = g.t => vy = 10.3,0 => vy = 30 m/s
v2 = vx2+vy2 => v2 = (40)2+(30)2 => v = 50 m/s
Respostas:
a) 6,0 s; 240 m
b) 45 m
c) 40 m/s; 30 m/s; 50 m/s
Nenhum comentário:
Postar um comentário