Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

segunda-feira, 24 de setembro de 2012

Cursos do Blog - Mecânica

Forças em trajetórias curvilíneas. Novos exercícios

Borges e Nicolau 

Resumo: 

Quando um corpo descreve um movimento circular uniforme sua aceleração é centrípeta (acp), com intensidade dada por  acp = v2/R , onde v é a velocidade escalar e R o raio da trajetória.

Pela segunda lei de Newton a resultante das forças que agem no corpo, chamada resultante centrípeta (Fcp = m.acp), é responsável pela trajetória circular que o corpo descreve. Fcp e acp têm direção perpendicular à velocidade vetorial do corpo, em cada instante e sentido para o centro da trajetória.


Exemplos:

1) Um pequeno bloco preso a um fio descreve em uma mesa, perfeitamente lisa, um movimento circular uniforme. As forças que agem no bloco são: o peso P, a força normal FN e a força de tração T. O peso e a força normal se equilibram. A resultante é a força de tração. Ela é a resultante centrípeta.


2) Num pêndulo cônico uma pequena esfera, presa a um fio, descreve uma trajetória circular num plano horizontal. As forças que agem na esfera são: o peso P e a força de tração T. A resultante P + T é a resultante centrípeta.  


Se o movimento curvilíneo for variado a força resultante apresenta duas componentes, uma centrípeta (responsável pela variação da direção da velocidade) e outra tangencial (responsável pela variação do módulo da velocidade). Veja o exemplo: uma pequena esfera presa a um fio oscila num plano vertical (pêndulo simples). Observe a esfera ao passar pela posição C. As forças que nela agem são o peso P e a força de tração T. Vamos decompor o peso nas componentes Pt e Pn.
O módulo da resultante centrípeta é T - Pn e o módulo da resultante tangencial é Pt.




Exercício 1: 
Um motociclista com sua moto descreve uma trajetória circular de raio R, num plano vertical, no interior de um globo da morte. O motociclista realiza a volta completa, sem descolar do piso. Prove que, nestas condições, a velocidade mínima do motociclista no ponto mais alto da trajetória é dada por 
onde g é a aceleração local da gravidade.

                                      
Resolução: clique aqui

Exercício 2:
Um carro de massa m entra numa curva de raio R de uma  estrada horizontal. O coeficiente de atrito estático entre a pista e os pneus é igual a μ. Prove que a máxima velocidade com que o carro pode fazer a curva, sem o perigo de derrapar, é dada por
onde g é a aceleração local da gravidade.



Resolução: clique aqui

Exercício 3:
Um automóvel percorre uma pista curva sobrelevada, isto é, a curva apresenta a margem externa mais elevada do que a margem interna. Seja θ o ângulo de sobrelevação, tal que tg θ = 0,15. Com que velocidade escalar o automóvel deve efetuar a curva, independentemente da força de atrito entre os pneus e a pista? É dada a aceleração da gravidade g =10 m/s2 e o raio da trajetória R = 150 m.

Clique para ampliar
  
Resolução: clique aqui

Exercício 4:
Um avião realiza um movimento circular uniforme de raio R = 120 m e com velocidade escalar v = 40 m/s. F é a força de sustentação e P é o peso do avião. Determine a intensidade da força F em função da massa m do avião. Considere 
g = 10 m/s2.


Resolução: clique aqui

Exercício 5:
O rotor é um cilindro oco que pode girar em torno de seu eixo. Uma pessoa está encostada na parede interna do cilindro, conforme mostra a figura. O cilindro começa a girar e a pessoa gira junto como se ficasse "grudada" no cilindro. Quando atinge uma velocidade angular mínima ωmin o piso é retirado e a pessoa não cai. Seja R o raio do cilindro, g a aceleração local da gravidade e μ o coeficiente de atrito estático entre a roupa da pessoa e a parede do cilindro. 

x
a) Represente as forças que agem na pessoa: o peso P e as componentes Fat (força de atrito) e FN (força normal).
b) Prove que

Resolução: clique aqui

Nenhum comentário:

Postar um comentário