Dieta espacial
(PUC-SP)
Garfield, com a finalidade de diminuir seu peso, poderia ir para quais planetas? Considere a tabela a seguir e gTerra = 9,8 m/s2, MT = massa da Terra e
RT = raio da Terra:
RT = raio da Terra:
a) Marte, Urano e Saturno
b) Vênus, Urano e Netuno
c) Marte, Vênus e Saturno
d) Mercúrio, Vênus e Marte
e) Mercúrio, Vênus e Júpiter
Resolução:
O peso é dado por: P = m.g. Como a massa é constante, para perder peso Garfield deve ir para os planetas onde a aceleração da gravidade g é menor do que a aceleração da gravidade gT na Terra.
Sendo na Terra gT = G.[MT /(RT)2], temos para os demais planetas:
Mercúrio
gM = G.[MM /(RM)2] = G.[0,055MT/(0,38RT)2] =>
gM = [0,055/(0,38)2].gT => gM ≅ 0,38.gT
Cálculos idênticos são feitos para os outros planetas. Assim, temos:
Vênus:
gV = G.[MV/(RV)2] => gV = [0,81/(0,95)2].gT => gV ≅ 0,89.gT
Marte:
gMarte = G.[MMarte/(RMarte)2] => gMarte = [0,11/(0,53)2].gT => gMarte ≅ 0,39.gT
Júpiter:
gJ = G.[MJ/(RJ)2] => gJ = [316,5/(11,2)2].gT => gJ ≅ 2,5.gT
Saturno:
gS = G.[MS/(RS)2] => gS = [94,8/(9,4)2].gT => gS ≅ 1,1.gT
Urano:
gU = G.[MU/(RU)2] => gU = [14,4/(4,0)2].gT => gU ≅ 0,90.gT
Netuno:
gN = G.[MN/(RN)2] => gN = [0,81/(0,95)2].gT => gN ≅ 1,1.gT
Os planetas cuja aceleração da gravidade em suas superfícies são menores do que a da Terra são: Mercúrio, Vênus, Marte e Urano.
Logo, a alternativa correta é d.
Nenhum comentário:
Postar um comentário