Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

quinta-feira, 28 de outubro de 2021

Mecânica - Aula 36 (continuação)

Exercícios de Revisão
 
Revisão/Ex 1:
(UFMA)
Ao ser examinado sobre o movimento dos planetas, um aluno escreveu os seguintes enunciados para as leis de Kepler.

I. Qualquer planeta gira em torno do Sol, descrevendo uma órbita elíptica, da qual o Sol ocupa um dos focos.
II. O segmento de reta que une um planeta ao Sol "varre" áreas proporcionais aos intervalos de tempo dos percursos.
III. Os quadrados dos períodos de revolução dos planetas são proporcionais aos cubos dos raios médios das órbitas.

Dos enunciados acima está(ão) correto(s):

a) todos.
b) nenhum.
c) somente I.
d) somente II.
e) somente III. 

Resolução: clique aqui

Revisão/Ex 2:
(UFPI)
Um planeta gira, em órbita elíptica, em torno do Sol. Considere as afirmações:

I. Na posição A, a quantidade de movimento linear do planeta tem módulo máximo.
II. Na posição C, a energia potencial do sistema (Sol + planeta) é máxima.
III. Na posição B, a energia total do sistema (Sol + planeta) tem um valor intermediário, situado entre os correspondentes valores em A e C.



Assinale a alternativa correta:

a) I e III são verdadeiras.
b) I e II são verdadeiras.
c) II e III são verdadeiras.
d) apenas II é verdadeira.
e) apenas I é verdadeira.

Resolução: clique aqui

Revisão/Ex 3:
(Olimpíada Brasileira de Física)
Considere que um planeta de raio R tem dois satélites A e B que descrevem órbitas circulares, como ilustrado na figura a seguir.



Desprezando a força de atração gravitacional entre os satélites, qual é o valor da razão TB/TA entre os períodos de revolução dos satélites em torno do planeta?

a) (3/2)2/3
b) (2/3)2/3
c) (5/2)3/2
d) 23/2
e) 1 

Resolução: clique aqui

Revisão/Ex 4:
(ITA-SP)
Estima-se que, em alguns bilhões de anos, o raio médio da órbita da Lua estará 50% maior do que é atualmente. Naquela época, seu período, que hoje é de 27,3 dias, seria:

a) 14,1 dias.
b) 18,2 dias. 
c) 27,3 dias.
d) 41,0 dias.
e) 50,2 dias.

Resolução: clique aqui

Revisão/Ex 5:
(UNICAMP)
A figura abaixo representa exageradamente a trajetória de um planeta em torno do Sol. O sentido do percurso é indicado pela seta. O ponto V marca o início do verão no hemisfério sul e o ponto I marca o início do inverno. O ponto P indica a maior aproximação do planeta ao Sol, o ponto A marca o maior afastamento. Os pontos V, I e o Sol são colineares, bem como os pontos P, A e o Sol. 


           
a) Em que ponto da trajetória a velocidade do planeta é máxima? Em que ponto essa velocidade é mínima? Justifique sua resposta.
b) Segundo Kepler, a linha que liga o planeta ao Sol percorre áreas iguais em tempos iguais. Coloque em ordem crescente os tempos necessários para realizar os seguintes percursos: VPI, PIA, IAV, AVP.

Resolução: clique aqui
n
Desafio:

Admita a órbita da Lua, em torno da Terra, circular, de raio R (figura A) e com período de translação de 27,35 dias.


Imagine que a Lua parasse em sua órbita e caísse na Terra depois de um intervalo de tempo Δt. Para calcular este intervalo de tempo use a seguinte estratégia: considere que a velocidade da Lua reduzisse a um valor próximo de zero. Nestas condições, a Lua passaria a descrever uma órbita elíptica de eixo maior R e de excentricidade próxima de 1, terminando por colidir catastroficamente com a Terra (figura B). Adote 2 = 1,41



Nestas condições, o valor de
Δt é aproximadamente igual a:

a) 19,28 dias
b) 9,64 dias
c) 4,82 dias
d) 2,41 dias
e) 1,20 dias

A resolução será publicada na próxima quinta-feira.

Resolução do desafio anterior:


Uma pequena esfera A de massa 3m é lançada com velocidade de módulo vA e colide elasticamente com outra esfera B, de massa m, em repouso na extremidade de uma mesa de 0,80 m de altura. Considere o choque unidimensional. Após a colisão a esfera B atinge um ponto do solo situado a 0,80 m da vertical onde ocorre o choque. Qual é o módulo da velocidade vA com que a esfera A é lançada? Dado: g = 10 m/s2.


Resolução:


Qantes = Qdepois
3mvA = 3mv'A + mv0
3vA = 3v'A + v0 (1)

Coeficiente de restituição

e = 1 = (v0-v'A)/vA => vA = v0 - v'A (2)

(1) + 3.(2):

(3vA = 3v'A + v0) + (3vA = 3v0 - 3v'A) => 6vA = 4v0 (3)

Cálculo de v0


Lançamento vertical

y = (1/2).g.t2
0,80 = (1/2).10.tq2
tq = 0,40 s (tempo de queda)

Lançamento horizontal

x = v0.t
0,80 = v0.tq
0,80 = v0.0,40
v0 = 2,0 m/s

De (3):

6vA = 4v0
6vA = 4.2,0 => vA = 8,0/6,0 => vA = 4,0/3,0
vA ≅ 1,3 m/s

Resposta: 1,3 m/s

Nenhum comentário:

Postar um comentário