Postagem em destaque

Como funciona o Blog

Aqui no blog você tem todas as aulas que precisa para estudar Física para a sua escola e para os vestibulares. As aulas são divididas em trê...

sábado, 30 de junho de 2012

Dica do Blog


Imagem Astronômica do Dia

Na borda da cratera Shorty

Saiba mais aqui

Especial de Sábado

Ganhadores do Premio Nobel de Física

Borges e Nicolau
x
1959
Emilio Gino Segrè e Owen Chamberlain pela descoberta do antipróton.

Emilio Gino Segrè (1905-1989), físico italiano e Owen Chamberlain (1920-2006), físico estadunidense

O físico britânico Paul Adrien Maurice Dirac previu a existência do pósitron
(antipartícula do elétron) e de outras antipartículas. O pósitron foi detectado experimentalmente pelo físico estadunidense Carl David Anderson. Com a construção de grandes aceleradores de partículas muitas antipartículas foram descobertas como, por exemplo o antipróton e o antinêutron. O antipróton foi descoberto em 1955 pelos físicos Emilio Gino Segrè e Owen Chamberlain, no acelerador de partículas Bévatron na Universidade da Califórnia, em Berkeley, nos Estados Unidos.

Por esse feito foram distinguidos, em 1959, com o premio Nobel de Física. 
(Fonte: Os fundamentos da Física, Editora Moderna, Volume 3)

Saiba mais. Clique aqui e aqui

Próximo Sábado: Ganhador do Premio Nobel de 1960:
Donald Arthur Glaser pela invenção da Câmara de Bolhas.

sexta-feira, 29 de junho de 2012

quinta-feira, 28 de junho de 2012

A Física Explica

Princípio de Arquimedes: uma abordagem experimental

Professores Luiz Marcelo Darroz e Carlos Ariel Samudio Pérez
Universidade de Passo Fundo, Passo Fundo, RS, Brasil

Fonte: Revista "A física na Escola"

Clique aqui

Caiu no vestibular

Pista inclinada

(UNIVERSIDADE MACKENZIE)
No trecho de estrada ilustrado, a curva pontilhada é um arco circular e o raio da circunferência que o contém mede 500 m. A placa sinaliza que a velocidade  máxima permitida, ao longo dessa linha, é 90 km/h.


Considerando a segurança da estrada e admitindo-se que essa velocidade máxima possa ocorrer independentemente do atrito entre os pneus do automóvel e a pavimentação plana da pista, o ângulo de inclinação mínimo, entre o plano da pista e a horizontal, indicado na figura, deve medir, aproximadamente,

a) 5,25° b) 6,10° c) 7,15° d) 8,20° e) 9,10°

Resolução:


tg θ = FR/P => tg θ = (m.v2/R)/m.g => tg θ = v2/R.g =>
tg θ = (25)2/500.10 => tg θ = 0,125 => θ 7,15°

Resposta: c

Cursos do Blog - Eletricidade

quarta-feira, 27 de junho de 2012

Cursos do Blog - Eletricidade

SIMULADO - TERCEIRO ANO DO ENSINO MÉDIO
CONTEÚDO: ELETROSTÁTICA E ELETRODINÂMICA

1. (UFMG)
Em seu laboratório, o Professor Ladeira prepara duas montagens

– I e II –, distantes uma da outra, como mostrado nestas figuras:

Em cada montagem, duas pequenas esferas metálicas, idênticas, são conectadas por um fio e penduradas em um suporte isolante. Esse fio pode ser de material isolante ou condutor elétrico. Em seguida, o professor transfere certa quantidade de carga para apenas uma das esferas de cada uma das montagens. Ele, então, observa que, após a transferência de carga, as esferas ficam em equilíbrio, como mostrado nestas figuras:


Considerando-se essas informações, é CORRETO afirmar que, após a transferência de carga,
A) em cada montagem, ambas as esferas estão carregadas.
B) em cada montagem, apenas uma das esferas está carregada.
C) na montagem I, ambas as esferas estão carregadas e, na II, apenas uma delas está carregada.
D) na montagem I, apenas uma das esferas está carregada e, na II, ambas estão


2. (UFMG)
Durante uma aula de Física, o Professor Carlos Heitor faz a demonstração de eletrostática que se descreve a seguir. Inicialmente, ele aproxima duas esferas metálicas, R e S, eletricamente neutras, de uma outra esfera isolante, eletricamente carregada com carga negativa, como representado na Figura I. Cada uma dessas esferas está apoiada em um suporte isolante. Em seguida, o professor toca o dedo, rapidamente, na esfera S, como representado na Figura II. Isso feito, ele afasta a esfera isolante das outras duas esferas, como representado na Figura III.



Considerando-se essas informações, é CORRETO afirmar que, na situação representada na Figura III,
A) a esfera R fica com carga negativa e a S permanece neutra.
B) a esfera R fica com carga positiva e a S permanece neutra.
C) a esfera R permanece neutra e a S fica com carga negativa.
D) a esfera R permanece neutra e a S fica com carga positiva.


3. (UFLA-MG)
Considere três esferas 1, 2 e 3, condutoras, idênticas e elaboradas de um mesmo material. Inicialmente, a esfera 1 está carregada com carga Q, e as esferas 2 e 3 estão descarregadas. Coloca-se a esfera 1 em contato com a esfera 2, eletrizando-a, e, em seguida, elas são separadas. Posteriormente, coloca-se a esfera 2 em contato com a esfera 3, eletrizando-a, e separando-as também. Finalmente, a esfera 3 é colocada em contato com a esfera 1, sendo depois separadas. Dessa forma, a carga final da esfera 1 é
A) 3Q/4

B) 3Q/8
C) Q/3
D) Q

4. (FUVEST-SP)
Três esferas metálicas, M1, M2 e M3, de mesmo diâmetro e montadas em suportes isolantes, estão bem afastadas entre si e longe de outros objetos. Inicialmente M1 e M3 têm cargas iguais, com valor Q, e M2 está descarregada. São realizadas duas operações, na sequência indicada:



I. A esfera M1 é aproximada de M2 até que ambas fiquem em contato elétrico. A seguir, M1 é afastada até retornar à sua posição inicial.
II. A esfera M3 é aproximada de M2 até que ambas fiquem em contato elétrico. A seguir, M3 é afastada até retornar à sua posição inicial.
Após essas duas operações, as cargas nas esferas serão cerca de


xxxxxxxxM1xxxxxxxxxM2xxxxxxxxxM3
A)xxxxxxQ/2xxxxxxxQ/4xxxxxxxxxQ/4
B)
xxxxxxQ/2xxxxxxx3Q/4xxxxxxx3Q/4
C)
xxxxxx2Q/3xxxxxx2Q/3xxxxxxx2Q/3
D)
xxxxxx3Q/4xxxxxxxQ/2xxxxxxxx3Q/4
E)
xxxxxxxQxxxxxxxxxzeroxxxxxxxxxQ

5. (UFLA-MG)
Uma casca condutora de raio R1 eletrizada com carga Q é colocada em contato com outra casca esférica de raio R2, porém, eletricamente neutra. Após o contato, as cascas esféricas são separadas e ficam eletrizadas com cargas q1 e q2, respectivamente. Considerando ambas as cascas esféricas condutoras e de mesmo material, e o sistema eletricamente isolado, pode-se afirmar que
A) se R1 > R2, então q1 < q2
B) se R1 < R2, então q1 > q2
C) se R1 > R2, então q1 > q2
D) se R1 < R2, então q1 = q2


6. (UEGO) 


Em 2006 celebrou-se o bicentenário da morte de Charles Augustin de Coulomb. Nascido em 14 de junho de 1736, em Angoulême, e falecido em 23 de agosto de 1806, em Paris, Coulomb em 1785 apresentou à Academia Real de Ciências a lei que rege as forças de atração e repulsão entre duas cargas elétricas. Esta lei é conhecida atualmente como Lei de Coulomb. A cerca da Lei de Coulomb e da representação abaixo, na qual se tem duas partículas separadas por uma distância d e o meio é o vácuo, julgue a validade das afirmações que seguem.



I. Se a carga Q1 for maior que a carga Q2, então F2,1  é maior que F1,2
II. Se a carga Q2 for nula, não haverá força eletrostática entre as partículas, haja vista que a Lei de Coulomb indica que esta força é inversamente proporcional ao produto das cargas.
III. Se as cargas Q1 e Q2 (mantendo-se à mesma distância) fossem mergulhadas em benzeno (constante dielétrica K = 2,3), o valor da força de repulsão entre elas tornar-se-ia K vezes menor que no vácuo.
IV. Se a carga Q2 for quadruplicada e a distância de separação reduzida a um terço, a força entre as partículas tornar-se-á 36 vezes maior.
V. Para se comprovar experimentalmente a Lei de Coulomb foi utilizada uma balança de torção.
Assinale a alternativa CORRETA:
A) Somente as afirmações I, II e III são verdadeiras.
B) Somente as afirmações I, IV e V são verdadeiras.
C) Somente as afirmações I, III e IV são verdadeiras.
D) Somente as afirmações III, IV e V são verdadeiras.
 


7. (FEI-SP)
Duas cargas elétricas Q1 = 5
µC  e Q2 = -7 µC estão a uma distância de 35 cm. Sabendo-se que k = 9.109 N.m2/C2, a força que atua entre as cargas é:
A) de atração e possui módulo 0,90 N.
B) de repulsão e possui módulo 0,90 N.
C) de atração e possui módulo 29 x
10-3 N.
D) de repulsão e possui módulo 2,6 N. 

E) de atração e possui módulo 2,6 N.
 

8. (UFRR)
Duas esferas condutoras idênticas, eletricamente isoladas, estão separadas por uma distância D. Uma esfera tem carga positiva +Q, enquanto que a outra está eletricamente neutra. Por um momento, as esferas são conectadas por meio de um fio condutor. Após o fio ser removido, qual é a intensidade da força eletrostática entre as esferas?

A) F = 0.
B) F = (k/2).Q/D2.
C) F = (k/2).Q2/D.
D) F = Q/2.
E) F = (k/4).(Q/D)2.

9. (UFPI)
Considere duas esferas idênticas que possuem cargas +Q e -2Q separadas por uma distância d = 2 m. Se as esferas forem postas em contato, adquirirão novas cargas. A seguir as esferas são separadas pela mesma distância d = 2 m. Sabendo que Qx=x4,0
µC e que a constante eletrostática é igual a 9.109 N.m2/C2, pode-se afirmar que a razão entre as intensidades das forças elétricas entre as esferas, antes e depois do contato, vale:
A) + 1/8
B) + 2
C) + 4
D) + 1/4
E) + 8


10. (UFAM)
Três corpos pontuais X, Y e Z têm cargas de mesma intensidade e sinais mostrados na figura. Elas estão localizadas em um triângulo isósceles. As cargas X e Y são mantidas fixas e a carga Z é livre para se mover. Qual a direção e o sentido da força elétrica em Z? As opções de direção e sentido estão listadas na própria figura



11. (UFV-MG)
A figura abaixo mostra uma carga pontual positiva +Q e outra negativa –Q, separadas por uma distancia 2L



O vetor campo elétrico resultante produzido por essas cargas está ilustrado corretamente no ponto:
A) A
B) B
C) C
D) D


12. (UFAM)
Sabendo-se que o campo elétrico no ponto P é nulo a razão d1/d2 vale 
A) 3
B) 2 
C) 2
D) 4
E) 6

13. (URCA)
Sejam quatro cargas elétricas pontuais q1 = + 2,0 x
10-9 C,
q2 = – 1,0 x 10-9 C, q3 = + 2,0 x 10-9 C e q4 = – 1,0 x 10-9 C, localizadas respectivamente nos pontos (0, 0), (8, 0), (8, 6) e (0, 6) de um plano cartesiano, valores em metros. Calcule o módulo do campo elétrico no ponto (4, 3).
(Dado: constante eletrostática do vácuo k0 = 9,0 x 109 N.m2/C2).
A) E = 0,0 N/C;
B) E = 3,6 N/C;
C) E = 7,2 N/C;
D) E = 0,36 N/C;
E) E = 0,72 N/C.


14. (UESPI)
Uma carga elétrica puntiforme, localizada no vácuo, cria, num ponto P
situado ax0,2 m da mesma, um campo elétrico de intensidade igual a 700 V/m. Neste caso, considerando o potencial elétrico nulo no infinito, o potencial elétrico no ponto P devido a tal carga vale:
A) 70 V
B) 140 V
C) 350 V
D) 700 V
E) 1400 V

15. (VUNESP)
A figura é a intersecção de um plano com o centro C de um condutor esférico e com três superfícies equipotenciais ao redor desse condutor.



Uma carga de 1,6 × 10-19 C é levada do ponto M ao ponto N. O trabalho realizado para deslocar essa carga foi de
A) 3,2 × 10-20 J.
B) 16,0 × 10-19 J.
C) 8,0 × 10-19 J.
D) 4,0 × 10-19 J.
E) 3,2 × 10-18 J.

16. (IJSO)
A energia potencial eletrostática de um par de cargas elétricas puntiformes de valores Q e q, situadas a uma distância d, em relação a um referencial no infinito, é dada por  Epot = k0.Q.q/d, onde k0 é a constante eletrostática do meio. Considere três partículas eletrizadas com cargas elétricas iguais e fixas nos vértices de um triângulo eqüilátero. Se dobrássemos os valores das cargas elétricas, o que aconteceria com a energia potencial eletrostática da configuração de cargas?
A) permaneceria a mesma
B) ficaria duas vezes maior
C) ficaria quatro vezes maior
D) ficaria 8 vezes maior
E) ficaria 12 vezes maior.


17. (UFAL)
Uma casca esférica homogênea, feita de material perfeitamente condutor, possui raio interno Rint e raio externo Rext. Fixa em seu centro existe uma carga puntiforme positiva Q (ver figura). Há vácuo nas demais regiões do espaço. O vetor campo elétrico no ponto A distante R do centro, onde Rint < R < Rext, é:
A) nulo.
B) paralelo ao vetor E1.
C) paralelo ao vetor E2.
D) paralelo ao vetor E3.
E) paralelo ao vetor E4.



18. (UFPI)
Com relação aos fenômenos elétricos, assinale a alternativa errada.
A) Cargas elétricas de mesmo sinal se repelem e cargas de sinais opostos se atraem.
B) Carga atrai carga em razão direta dos seus produtos e na razão inversa do quadrado da distância que as separa.
C) Um condutor eletricamente neutro não repele nem atrai outro condutor eletrizado.
D) As cargas elétricas que se encontram no interior de um condutor migram para a sua superfície externa devido à repulsão eletrostática entre as mesmas.
E) Nenhuma das respostas anteriores.


19. (UFMS)
Um consumidor, com o objetivo de comprar eletrodomésticos para sua residência, adquire um refrigerador e um chuveiro elétrico. Nas especificações técnicas do chuveiro, consta que deve ser ligado na tensão de 110 V e sua potência de consumo é igual a 3.000 W. Nas especificações técnicas da geladeira, consta que também deve ser ligada na tensão de 110 V e que, em regime normal de uso, seu consumo médio de energia é de 45 kwh por mês. Sabe-se que, nessa residência, moram quatro pessoas e que cada pessoa possui o hábito de tomar um banho por dia com o chuveiro ligado durante 12 minutos cada uma. Assinale a alternativa que corresponde ao tempo em que a geladeira poderá ficar ligada, em regime normal de uso, para consumir a mesma energia elétrica consumida pelo chuveiro durante um mês. Considere um dia com 24 horas e um mês com trinta dias.
A) 30 dias.
B) 45 dias.
C) 1,8 mês.
D) Menos que 30 dias.
E) 1.152 horas.


20. (UEL-PR)
Um condutor é caracterizado por permitir a passagem de corrente elétrica ao ser submetido a uma diferença de potencial. Se a corrente elétrica que percorre o condutor for diretamente proporcional à tensão aplicada, este é um condutor ôhmico. Assinale a alternativa que apresenta, respectivamente, as correntes elétricas que atravessam um condutor ôhmico quando submetido a tensões não simultâneas de 10, 20, 30, 40 e 50 volts.
A) 0,5 A; 1,0 A; 2,0 A; 4,0A; 8,0 A.
B) 0,5 A; 2,5 A; 6,5 A; 10,5 A; 12,5 A.
C) 1,5 A; 3,0 A; 6,0 A; 12,0 A; 18,0 A.
D) 0,5 A; 1,5 A; 3,5 A; 4,5A; 5,5 A.
E) 0,5 A; 1,0 A; 1,5 A; 2,0A; 2,5 A.


(UERJ)
UTILIZE AS INFORMAÇÕES A SEGUIR PARA RESPONDER ÀS QUESTÕES DE NÚMEROS 21 E 22.

21. Em residências conectadas à rede elétrica de tensão eficaz igual a 120 V, uma lâmpada comumente utilizada é a de filamento incandescente de 60 W.
A corrente elétrica eficaz, em ampères, em uma lâmpada desse tipo quando acesa, é igual a:
A) 0,5
B) 1,0
C) 2,0
D) 3,0

22. A resistência do filamento, em ohms, em uma lâmpada desse tipo quando acesa, é da ordem de:
A) 30
B) 60
C) 120
D) 240


23. (FGV-SP)
Um fio de cobre tem um raio igual a r, uma resistência R e comprimento L. Se o raio do fio for duplicado e o comprimento reduzido à metade, o novo valor da resistência vale:
A) 4R
B) R/4
C) R
D) R/8
E) 8R


24. (UFRN)
Um eletricista instalou uma cerca elétrica no muro de uma residência. Nas especificações técnicas do sistema, consta que os fios da cerca estão submetidos a uma diferença de potencial 1,0 x
104 V em relação à Terra. O eletricista calculou o valor da corrente que percorreria o corpo de uma pessoa adulta caso esta tocasse a cerca e recebesse uma descarga elétrica. Sabendo-se que a resistência elétrica média de um adulto é de 2,0x106 Ω  e utilizando-se a lei de Ohm, o valor calculado pelo eletricista para tal corrente, em ampère, deve ser:
A) 2,0 x 102
B) 5,0 x 10-3
C) 5,0 x 103 
D) 2,0 x 10-2  

25. (FATEC-SP)
Componentes de um circuito elétrico, os resistores têm a função de dissipar energia, controlar a intensidade da corrente elétrica que atravessa um condutor e modificar a impedância de um circuito. Em um resistor ôhmico, mantido a uma temperatura constante, a diferença de potencial V aplicada é diretamente proporcional à intensidade de corrente i que o atravessa.



Analisando no gráfico os intervalos compreendidos entre os pontos A, B, C e D, aquele que garante que o resistor obedece às Leis de Ohm é
A) AB.  B) BC.  C) CD.  D) BD.  E) AD


26. (UEPB)
A figura abaixo representa parte de um circuito elétrico de uma residência, com alguns componentes eletrodomésticos identificados com suas respectivas potências (tabela abaixo). 

A instalação elétrica desta residência está ligada a uma rede monofásica de 220 V e protegida por um disjuntor ou fusível F.


Considerando que todos os equipamentos estejam ligados ao mesmo tempo, o consumo de energia elétrica da residência, em kWh, durante 120 minutos, é:
A) 4,56
B) 3,52
C) 6,32
D) 2,84
E) 5,34


27. (UFPI)
Um determinado aparelho de resistência igual a 25 ohms e voltagem de 10 volts dissipa, em 1 minuto, uma energia de:
A) 1,2.
102 J
B) 5,0.
102 J
C) 7,5.
102 J
D) 2,4.
102 J
E) 2,0.
102 J

28. (CEFET-SP)
A preocupação com possíveis “apagões” está tomando conta das mentes dos moradores e administradores da cidade de São Paulo, estimulando-os a buscar soluções alternativas para o uso mais racional da energia elétrica. Nesse sentido, a instalação de aquecedores solares de água está gradativamente aumentando, permitindo que se evite a utilização do chuveiro elétrico nos dias de forte insolação. De fato, esse arcaico modo de aquecer água por efeito resistivo é um vilão, sobretudo nos horários de pico, sendo fácil calcular esse desperdício de energia. Se cada um dos integrantes de uma família de quatro indivíduos demora em média 20 minutos em seu banho diário, usando o chuveiro elétrico, ao longo de um mês inteiro de 30 dias, a energia elétrica utilizada por um chuveiro de 4 000 W, para aquecimento de água para banho, soma um total, em kWh, de
A) 20.
B) 60.
C) 160.
D) 280.
E) 320.


29. (FEI-SP)
Um chuveiro elétrico de resistência R sofreu uma sobrecarga e queimou. Como o eletricista não possuía outra resistência para substituir, ele consertou a resistência do chuveiro eliminando 20% do seu comprimento. Quanto à nova resistência do chuveiro, podemos afirmar que:
A) é maior que R, pois quanto maior o comprimento, menor a resistência.
B) é igual a R, pois o material é o mesmo.
C) é menor que R, pois quanto maior o comprimento, menor a resistência.
D) é maior que R, pois quanto maior o comprimento, maior a resistência.
E) é menor que R, pois quanto menor o comprimento, menor é a resistência.


30. (FUVEST-SP)
O filamento de uma lâmpada incandescente, submetido a uma tensão U, é percorrido por uma corrente de intensidade i. O gráfico abaixo mostra a relação entre i e U.


x
As seguintes afirmações se referem a essa lâmpada.
I. A resistência do filamento é a mesma para qualquer valor da tensão aplicada.
II. A resistência do filamento diminui com o aumento da corrente.
III. A potência dissipada no filamento aumenta com o aumento da tensão aplicada.
Dentre essas afirmações, somente
A) I está correta.
B) II está correta.
C) III está correta.
D) I e III estão corretas.
E) II e III estão corretas. 

Cursos do Blog - Termologia, Óptica e Ondas


terça-feira, 26 de junho de 2012

Cursos do Blog - Termologia, Óptica e Ondas

SIMULADO - SEGUNDO ANO DO ENSINO MÉDIO
CONTEÚDO: TERMOLOGIA

1. (UFAC)
A temperatura em Rio Branco, em certo dia, sofreu uma variação de 15 ºC. Na escala Fahrenheit, essa variação corresponde a:
A) 108 ºF
B) 71 ºF
C) 44 ºF
D) 27 ºF
E) 1 ºF 

2. (UFPI)
Em 1708, o físico dinamarquês Olé Römer, propôs uma escala termométrica a álcool, estabelecendo 60 graus para água em ebulição e zero graus para uma mistura de água com sal, resultando em 8 graus a temperatura da fusão do gelo. Além da possível utilização científica, essa escala teria a vantagem de nunca marcar temperaturas negativas em Copenhague, o que era desejo dos fabricantes da época, devido a superstições. A temperatura média normal do corpo humano na escala de Römer e a menor temperatura, em graus Celsius, que Copenhague poderia registrar nos termômetros de escala Römer, são nessa seqüência dadas, aproximadamente, por:
Dado: considere a temperatura normal do corpo humano igual a 36,5 ºC.
A) 27,0 ºC e 8,0 ºR
B) -15,4 ºR e 36,5 ºC
C) 27,0 ºR e -15,4 ºC
D) 27,0 ºC e 0,0 ºR
E) 36,5 ºR e -15,4 ºC 

3. (UFPI)
O Aquecimento Global é um fenômeno climático de larga extensão. As previsões mais catastróficas para a região Amazônica incluem o desaparecimento completo da floresta se a temperatura média da região tiver um aumento superior aos 5 ºC. Com isso a temperatura média anual da cidade de Manaus passaria a ser de 33 ºC, que lida na escala Kelvin corresponderia a:
A) 300 K
B) 310 K
C) 290 K
D) 306 K
E) 302 K 

4. (UFAC)
Uma barra de alumínio tem 100 cm, a 0 ºC. Qual o acréscimo de comprimento dessa barra quando sua temperatura chega a 100 ºC.
(Dado: αAl = 2,4 x 10-5 ºC-1).
A) 0,12 cm
B) 0,24 cm
C) 0,36 cm
D) 0,48 cm
E) 0,60 cm 

5. (UFV-MG)
Duas barras, 1 e 2, possuem coeficientes de dilatação linear α1 e α2, respectivamente, sendo α1 > α2. A uma certa temperatura To os comprimentos das duas barras são iguais a Lo. O gráfico que melhor representa o comprimento das barras em função da temperatura é:


Clique para ampliar


6. (UEMS)
Na temperatura ambiente, dois cubos A e B possuem arestas iguais a L e coeficientes de dilatação volumétricas
γA e γB, respectivamente, com γA = (3/2)γB. Supondo que os dois cubos sofram a mesma variação de volume, pode-se afirmar que a relação entre as variações de temperatura dos cubos A e B é:
A)
ΔθA = (1/4)ΔθB
B)
ΔθA = (1/3)ΔθB
C)
ΔθA = (1/2)ΔθB
D)
ΔθA = (2/3)ΔθB
E)
ΔθA = ΔθB

7. (UECE)
Considerando que os coeficientes de dilatação do aço, do alumínio e do latão são, respectivamente, 11x
10-6 ºC-1, 23 x 10-6 ºC-1 e 19 x 10-6 ºC-1, o coeficiente de dilatação linear de uma haste de 10 m, constituída por uma barra de aço de 3 m, uma barra de alumínio de 5 m e por uma barra de latão de 2 m, é:
A) 5,3 x
10-6 ºC-1
B) 18,6 x 10-6 ºC-1
C) 23,0 x 10-6 ºC-1
D) 87,0 x 10-6 ºC-1

8. (AFA-SP)
Um recipiente tem capacidade de 3.000 cm
3 a 20 ºC e está completamente cheio de um determinado líquido. Ao aquecer o conjunto até 120 ºC, transbordam 27 cm3. O coeficiente de dilatação aparente desse líquido, em relação ao material de que é feito o recipiente é, em ºC-1, igual a:
A) 3,0.
10-5    
B) 9,0.
10-5     
C) 2,7.
10-4
D) 8,1.10-4

9. (UFAM)
O gráfico representa a temperatura dois corpos sólidos A e B de massas iguais, em função da quantidade de calor Q recebida. 



Colocando A a 20 ºC em contato com B a 100 ºC e admitindo que a troca de calor só ocorra entre eles, a temperatura final de equilíbrio é em ºC:
A) 50
B) 80
C) 60
D) 70
E) 90


10. (FEI-SP)
Um trocador de calor usado na indústria recebe água quente à temperatura de 90 ºC. Deseja-se resfriar esta água até que sua temperatura atinja 50 ºC. Sabendo-se que para isto será utilizada água fria à temperatura de 20 ºC e que não existe perda de calor para o ambiente, qual será a razão entre a massa de água quente e a massa de água fria que deverá ser utilizada?
A) 1,50
B) 0,50
C) 0,75
D) 1,00
E) 1,33


11. (UFPA)
Um fabricante de queijo do Marajó, objetivando entrar no ramo de exportação, teve que fornecer algumas características do leite de búfala que usava. Para calcular o calor específico, c, do leite, usou um fogão a gás, cujo queimador tinha uma potência de 2 kW. Ao aquecer 500 g de leite, observou, após 20 s, uma variação de 20 ºC na temperatura do leite. O valor encontrado para c, em kJ/kg.ºC, foi
A) 2,0
B) 2,8
C) 3,2
D) 4,0
E) 4,2


12. (CEFET-AL)
A tabela abaixo mostra informações das amostras de três substâncias, onde: m é a massa (em g), c é o calor específico (em cal/g.ºC) e
θo é a temperatura inicial (em ºC).



Afirma-se que:
I) Fazendo-se a mistura das três substâncias em um calorímetro ideal, o equilíbrio térmico ocorre a 23,7 ºC.
II) Do início da mistura até o equilíbrio térmico,apenas o chumbo perde calor.
III) A amostra de chumbo é a mais sensível ao calor.

A) I e III estão corretas
B) II e III estão corretas
C) I e II estão corretas
D) todas estão corretas
E) todas estão falsas


13. (UERJ)
A tabela abaixo mostra apenas alguns valores, omitindo outros, para três grandezas associadas a cinco diferentes objetos sólidos:
– massa;
– calor específico;
– energia recebida ao sofrer um aumento de temperatura de 10 ºC.



A alternativa que indica, respectivamente, o objeto de maior massa, o de maior calor específico e o que recebeu maior quantidade de calor é:
A) I, III e IV
B) I, II e IV
C) II, IV e V
D) II, V e IV


14. (UFU-MG)
O gráfico abaixo representa a temperatura de uma amostra de massa de

20 g de determinada substância, inicialmente no estado sólido, em função da quantidade de calor que ela absorve. 


Com base nessas informações, marque a alternativa correta.
A) O calor latente de fusão da substância é igual a 30 cal/g.
B) O calor específico na fase sólida é maior do que o calor específico da fase líquida.
C) A temperatura de fusão da substância é de 300 ºC.
D) O calor específico na fase líquida da substância vale 1,0 cal/g.ºC.

 

15. (UEMS)
Em um calorímetro ideal misturam-se 200 gramas de água a uma temperatura de 58 ºC com M gramas de gelo a -10 ºC. Sabendo que a temperatura de equilíbrio dessa mistura será de 45 ºC, o valor da massa M do gelo em gramas é de:
(calor específico da água: cágua = 1,0 cal/g.ºC; calor específico do gelo: cgelo = 0,5 cal/g.ºC; calor latente de fusão do gelo: 80 cal/g)
A) 12
B) 15
C) 20
D) 25
E) 40



16. (U. Mackenzie-SP)

Durante a realização de certo experimento, um pesquisador necessitou de água líquida a 0 ºC. Para obtê-la, pegou um recipiente contendo 400 cm3 de água, que estava no interior de um refrigerador, à temperatura de 5 ºC. Em seguida, dispondo de “pedrinhas” de gelo (água sólida) a –20 ºC, com 5,0 g de massa cada uma, misturou algumas delas à água do recipiente e atingiu o seu objetivo. Desprezando-se as possíveis trocas de calor com o meio ambiente e considerando os dados da tabela acima, conclui-se que o número mínimo de “pedrinhas” de gelo misturadas à água do recipiente foi
A) 4
B) 5
C) 15
D) 36
E) 45


17. (FUVEST-SP)
Um aquecedor elétrico é mergulhado em um recipiente com água a 10 ºC e, cinco minutos depois, a água começa a ferver a 100 ºC. Se o aquecedor não for desligado, toda a água irá evaporar e o aquecedor será danificado. Considerando o momento em que a água começa a ferver, a evaporação de toda a água ocorrerá em um intervalo de aproximadamente
A) 5 minutos.
B) 10 minutos.
C) 12 minutos.
D) 15 minutos.
E) 30 minutos.


Calor específico da água = 1,0 cal/g.ºC
Calor de vaporização da água = 540 cal/g
Desconsidere perdas de calor para o recipiente, para o ambiente e para o próprio aquecedor.

18. (CEFET-SP)
O morador da cidade de São Paulo, relativamente àquele que mora no litoral, pode economizar gás de cozinha toda manhã, ao ferver a água para o café. De fato, em São Paulo, a água ferve a cerca de 98 ºC, diferente do litoral, onde ela ferve a 100 ºC. Se a água que sai da torneira, em ambos os lugares, estiver inicialmente a 20 ºC, a energia economizada pelo paulistano para que 800 mL de água atinjam a temperatura de ebulição é, em cal, relativamente ao santista,
Dados: densidade da água = 1 g/mL
calor específico da água = 1 cal/(g.ºC)
A) 1 600.
B) 1 800.
C) 2 400.
D) 3 400.
E) 7 850.
x
19. (UECE)
Observando o diagrama de fase PT mostrado a seguir

Pode-se concluir, corretamente, que uma substância que passou pelo processo de sublimação segue a trajetória
A) X ou Y.
B) Y ou U.
C) U ou V.
D) V ou X.


20. (UFMG)
Depois de assar um bolo em um forno a gás, Zulmira observa que ela queima a mão ao tocar no tabuleiro, mas não a queima ao tocar no bolo. Considerando-se essa situação, é CORRETO afirmar que isso ocorre porque
A) a capacidade térmica do tabuleiro é maior que a do bolo.
B) a transferência de calor entre o tabuleiro e a mão é mais rápida que entre o bolo e a mão.
C) o bolo esfria mais rapidamente que o tabuleiro, depois de os dois serem retirados do forno.
D) o tabuleiro retém mais calor que o bolo.

21. (UEMS)
Certa quantidade de gás ideal, contida num recipiente de volume 2 litros, tem uma temperatura de 27 ºC, sob uma pressão de 1,5 atm. Essa mesma quantidade de gás, se colocada num recipiente de volume 1 litro, sob uma pressão de 2 atm, terá uma temperatura de:
A) -63 ºC
B) -73 ºC
C) -83 ºC
D) -93 ºC
E) -103 ºC

22. (UFPB)
Um gás ideal sofre três processos termodinâmicos na seguinte seqüência: dilatação isotérmica, compressão isobárica e transformação isocórica. Esses processos estão representados no diagrama PV (Pressão × Volume) abaixo.




Nessas circunstâncias, o diagrama VT (Volume × Temperatura) correspondente é:
 
23. (UFMA)
De acordo com a primeira Lei da Termodinâmica, a variação da energia interna (
ΔU) igual à diferença entre o calor trocado com o ambiente (Q) e o trabalho realizado no processo termodinâmico (τ). Dessa forma, qual o valor de ΔU quando um gás ideal passa por transformações do tipo: isotérmica, isobárica, isométrica, adiabática e cíclica?
A) zero, Q -
τ, Q, -τ, zero
B) Q -
τ, Q, zero, -τ, zero
C) zero, Q, Q -
τ, zero, -τ
D) Q, -τ, Q - τ, zero, zero
E) -
τ, Q, zero, Q - τ, zero
x
24. (UNIR-RO)
Dois gases ideais submetidos às pressões p1 = 1 atm e p2 = 2 atm, em equilíbrio térmico, estão confinados em recipientes de volumes V1 = 2 m3 e V2 = 3 m3, respectivamente, ligados por uma válvula inicialmente fechada. Ao se abrir a válvula, os dois gases fluem livremente, sem alterar sua temperatura, ocupando os dois recipientes com a mesma pressão que será:
A) 2,5 atm
B) 3,0 atm
C) 1,5 atm
D) 0,6 atm
E) 1,6 atm
x
25. (UFPE)
Um mol de um gás ideal, inicialmente à temperatura de 300 K, é submetido ao processo termodinâmico ABC mostrado no diagrama V versus T. Determine o trabalho realizado pelo gás, em calorias.
Considere R = 2,0 cal/mol.K.



A) 1200 cal
B) 1300 cal
C) 1400 cal
D) 1500 cal
E) 1600 cal


26. (CEFET-RJ)
Uma amostra de um gás ideal é comprimida lenta e linearmente a partir do volume inicial 2V0 e pressão P0 até o volume final V0, conforme ilustrado no gráfico. Sabendo que a temperatura final do gás é igual à temperatura inicial, a pressão final e o calor trocado pelo gás no processo, valem respectivamente,
a) (2/3)P0, 3P0V0
b) 2P0, (3/2)P0V0
c) 3P0, (2/3)P0V0
d) (3/2)P0V0, 2P0V0

27. (UECE)
Uma máquina térmica funciona de modo que n mols de um gás ideal evoluam segundo o ciclo ABCDA, representado na figura.

Sabendo-se que a quantidade de calor Q, absorvida da fonte quente, em um ciclo, é 18nRTo, onde To é a temperatura em A, o rendimento dessa máquina é, aproximadamente,
A) 55%
B) 44%
C) 33%
D) 22%


28. (UECE)
Uma máquina térmica recebe determinada quantidade de calor e realiza um trabalho útil de 400 J. Considerando que o trabalho da máquina é obtido isobaricamente a uma pressão de 2,0 atm, num pistão que contém gás, determine a variação de volume sofrida pelo gás dentro do pistão. Considere 1,0 atm = 1,0 x
105 N/m2.
A) 
10-3 m3 
B) 2 x 10-3 m3
C) 8 x 10-3 m3
D) 5 x 10-4 m3 

29. (UEMS)
Com relação a 2ª Lei da Termodinâmica, pode-se afirmar que:
I. O calor de um corpo com temperatura T1 passa para outro corpo com temperatura T2 se T2 > T1.
II. Uma maquina térmica operando em ciclos pode retirar calor de uma fonte e convertê-lo integralmente em trabalho.
III. Uma maquina térmica operando em ciclos entre duas fontes térmicas, uma quente e outra fria, converte parte do calor retirado da fonte quente em trabalho e o restante envia para a fonte fria.
Assinale a alternativa que apresenta a(s) afirmativa(s) correta(s).
A) I
B) II
C) III
D) I e II
E) I e III

30. (URCA)
O ciclo de Carnot apresenta o máximo rendimento para uma máquina térmica operando entre duas temperaturas. Sobre ele podemos afirmar:
I– É formado por duas transformações adiabáticas alternadas com duas transformações isotérmicas, todas reversíveis;
II– A área do ciclo de Carnot é numericamente igual ao trabalho realizado no ciclo;
III– As quantidades de calor trocados com as fontes quente e fria são inversamente proporcionais às respectivas temperaturas absolutas das fontes.

Assinale a opção que indica o(s) item(ns) correto(s):
A) I, II e III;
B) Somente I e III;
C) Somente II e III;
D) Somente I;
E) Somente I e II.