segunda-feira, 1 de junho de 2020

Cursos do Blog - Mecânica


19ª aula
Movimentos Circulares (II)

Borges e Nicolau

Transmissão de movimento circular uniforme

A transmissão do movimento circular de uma polia para outra, pode ser feita de dois modos:
1) utilizando-se uma correia ou uma corrente;
2) estabelecendo-se um contato direto entre as polias.
Para não haver deslizamento ou escorregamento são usadas engrenagens cujos dentes se encaixam nos elos da corrente ou, no caso do contato, há uma adaptação dos dentes das engrenagens.

Clique para ampliar
Esquematicamente, temos:

Clique para ampliar

Não havendo escorregamento os pontos periféricos das polias têm a mesma velocidade linear. Assim, vem:
VA = VB
Sendo v = ω.R e ω = 2π.f, resulta:

ωA.RA = ωB.RB
fA.RA = fB.RB 

Movimento circular uniformemente variado

Conhecemos as equações lineares do movimento uniformemente variado:

S = S0 + v0.t + (1/2) α.t2
v = v0 + α.t
α = αm = Δv/Δt = constante e diferente de zero
v2 = v02 + 2.α.ΔS
v0 = velocidade inicial
α = aceleração escalar

As correspondentes equações angulares são obtidas lembrando que:

φ = S/R => ω = V/R e γ = Δω/Δt = α/R (aceleração angular)

Assim, temos:

φ = φ0 + ω0.t + (1/2).γ.t2

ω = ω0 + γ.t
ω2 = ω02 + 2.γ.Δφ

Exercícios básicos

Exercício 1:
Duas polias, 1 e 2, são ligadas por uma correia. A polia 1 possui
raio R1x=x20 cm, gira com frequência f1 = 30 rpm. A polia 2 possui raio
R2 = 15 cm, gira com frequência f2. Não há escorregamento da correia sobre as polias. Determine:

a) a frequência f2;
b) as velocidades lineares v1 e v2 dos pontos P1 e P2.

Clique para ampliar

Resolução: clique aqui

Exercício 2:
Duas polias, 1 e 2, giram ligadas ao eixo de um motor. A polia 1 possui
raio R1 = 20 cm, gira com velocidade angular ω1 = 12 rad/s. A polia 2
possui raio R2 = 15 cm. Determine:

a) a frequência f1 da polia 1;
b) a velocidade angular ω2 e a frequência f2 da polia 2;
c) as velocidade lineares v1 e v2 dos pontos P1 e P2.

Clique para ampliar

Resolução: clique aqui

Exercício 3:
Três engrenagens giram vinculadas conforme a figura. A engrenagem A gira no sentido horário com velocidade angular 30 rad/s. As engrenagens C, B e A possuem raios R, 2R e 3R, respectivamente. Determine as velocidades angulares de B e C e seus sentidos de rotação.

 Clique para ampliar

Resolução: clique aqui

Exercício 4:
Uma partícula, partindo do repouso, realiza um movimento circular uniformemente variado de raio igual a 16 cm. Nos primeiros 4 s a partícula descreve um ângulo de π/2 rad. Determine:

a) a aceleração angular γ e a aceleração linear α.
b) o número de voltas que a partícula executa 40 s após a partida.

Resolução: clique aqui 

Exercício 5:
Um disco, partindo do repouso, realiza um movimento uniformemente variado e no instante em que completa 5 voltas, sua velocidade angular é de 6 rad/s. Calcule a aceleração angular do disco. Adote π = 3.

Resolução: clique aqui

Exercícios de revisão

Revisão/Ex 1:
(FUVEST)
Uma cinta funciona solidária com dois cilindros de raios r
1 = 10 cm e r2 = 50 cm. Supondo que o cilindro maior tenha uma frequência de rotação f2 igual a 60 rpm: 

a) Qual a frequência de rotação
f1 do cilindro menor?
b) Qual a velocidade linear da cinta? Adote
π = 3.


Resolução: clique aqui

Revisão/Ex 2:
(Uniube-MG)
Duas engrenagens de uma máquina estão acopladas segundo a figura. A frequência da engrenagem A é cinco vezes maior que a de B, portanto a relação entre os raios de A e B é:



a) 2.
b) 1.
c) 1/2.
d) 1/4.
e) 1/5.


Resolução: clique aqui

Revisão/Ex 3:
(Mackenzie-SP)
Quatro polias, solidárias duas a duas (figura 1), podem ser acopladas por meio de uma única correia, conforme as possibilidades abaixo ilustradas
(figura 2).

figura 1

                                                     figura 2

Os raios das polias A, B, C e D são respectivamente, 4,0 cm, 6,0 cm, 8,0 cm e 10 cm. Sabendo que a frequência do eixo do conjunto CD é 4800 rpm, a maior frequência obtida para o eixo do conjunto AB, dentre as combinações citadas, é:

a) 400 Hz.
b) 200 Hz.
c) 160 Hz.
d) 133 Hz.
e) 107 Hz.


Resolução: clique aqui

Revisão/Ex 4:
(Olimpíada Brasileira de Física)
Uma partícula inicialmente em repouso executa um movimento circular uniformemente variado ao longo de uma circunferência de raio R. Após uma volta completa, o módulo de sua velocidade é igual a v. Nesse instante, o módulo de sua aceleração vale:

a). v
2/R
b) 
v2.√(2/R)
c). 4.
v2/R
d). (
v2/R).(1+1/4π)
e).
(v2/R).(1+1/16π2)

Resolução: clique aqui

Revisão/Ex 5:
(UFPB)
Em uma bicicleta, a transmissão do movimento das pedaladas se faz através de uma corrente, acoplando um disco dentado dianteiro (coroa) a um disco dentado traseiro (catraca), sem que haja deslizamento entre a corrente e os discos. A catraca, por sua vez, é acoplada à roda traseira de modo que as velocidades angulares da catraca e da roda sejam as mesmas (ver a seguir figura representativa de uma bicicleta).



Em uma corrida de bicicleta, o ciclista desloca-se com velocidade escalar constante, mantendo um ritmo estável de pedaladas, capaz de imprimir no disco dianteiro uma velocidade angular de 4 rad/s, para uma configuração em que o raio da coroa é 4R, o raio da catraca é R e o raio da roda é 0,5 m. Com base no exposto, conclui-se que a velocidade escalar do ciclista é:

a) 2 m/s     b) 4 m/s     c) 8 m/s     d) 12 m/s     e) 16 m/s


Resolução: clique aqui
s
Desafio: 

Uma bicicleta desloca-se em linha reta com  velocidade constante de 4,0 m/s. O diâmetro do pneu é igual a 60 cm. No centro da roda traseira, presa ao eixo, há uma roda dentada de diâmetro 6,0 cm. Junto ao pedal e preso ao seu eixo há outra roda dentada de diâmetro 20 cm. A transmissão do movimento circular é feito por uma corrente.  Não há deslizamento entre a corrente e as rodas dentadas.


Supondo que o ciclista imprima aos pedais um movimento circular uniforme, qual é o número de voltas por minuto que o ciclista impõe aos pedais durante esse movimento?
Considere
π = 3.

Resolução aqui

Resolução do desafio anterior: 

Duas partículas, A e B, partem de um mesmo ponto C de uma circunferência. Elas realizam movimentos uniformes, no mesmo sentido, cujos períodos são, respectivamente 2 s e 5 s. As partículas passarão simultaneamente pela posição C, depois de um intervalo de tempo mínimo igual a:

a) 2 s        b) 5 s        c) 7 s        d) 10 s        e) 15 s

A partícula A volta à posição C nos instantes: 2 s, 4 s, 6 s, 8 s, 10 s, 12 s, ... A partícula B volta à posição C nos instantes: 5 s, 10 s, 15 s, 20 s,... Assim, as partícula A e B passarão simultaneamente pela posição C depois de um intervalo de tempo mínimo igual a 10 s. Observe que 10 s é o mínimo múltiplo comum de 2 s e 5 s.

Resposta: d

Nenhum comentário:

Postar um comentário