segunda-feira, 30 de novembro de 2020

Cursos do Blog - Mecânica


37ª aula
Lei de Newton da Gravitação Universal

Borges e Nicolau

Isaac Newton, com base nas Leis de Kepler, descobriu que a força que mantém um planeta em órbita em torno do Sol tem intensidade diretamente proporcional à massa do Sol e à massa do planeta e inversamente proporcional ao quadrado da distância entre eles. Essas forças de interação à distância são denominadas forças gravitacionais. Vamos, a seguir, enunciar a Lei da Gravitação Universal para dois pontos materiais:
x
Dois pontos materiais de massas m e M e situados a uma distância d atraem-se com forças que têm a direção da reta que os une e cujas intensidades são diretamente proporcionais ao produto das massas e inversamente proporcional ao quadrado da distância que os separa.





G = 6,67 x 10-11 N.m2/(kg)2 é a constante de gravitação universal.

No caso de duas esferas homogêneas a distância a ser considerada, para a aplicação da Lei da Gravitação Universal, é entre os centros das esferas.


x
Aceleração da gravidade
x
Vamos considerar um ponto material de massa m situado a uma distância d do centro da Terra, suposta esférica, homogênea, estacionária e de massa M.


x
A intensidade da força de atração  gravitacional F entre M e m é, nestas condições,  o próprio peso P do ponto material. Assim, podemos escrever:




Temos, assim, o módulo da aceleração da gravidade num ponto situado a uma distância d do centro da Terra. Num ponto da superfície, sendo R o raio da Terra, o módulo da aceleração da gravidade é dado por:



As duas expressões anteriores são válidas para qualquer planeta. Neste caso M e a massa do planeta e R seu raio.

Velocidade de translação de um satélite em órbita circular

Um satélite de massa m descreve uma órbita circular de raio r, em torno de um planeta de massa M


Para determinar a velocidade de translação do satélite, basta observar que a força de atração gravitacional, que o planeta exerce no satélite, é a resultante centrípeta:




Observe que a velocidade de translação do satélite depende da massa M do planeta, do raio r da órbita e não depende da massa m do satélite. A força de atração gravitacional, que o planeta exerce no satélite e nos corpos situados no seu interior, está sendo usada como resultante centrípeta que tem, como única função, manter os corpos em órbita. Por isso, os corpos no interior dos satélites flutuam: é a chamada imponderabilidade.

Recorde a lei de Newton da Gravitação Universal pela animação abaixo:

Clique aqui

x
Exercícios básicos

Exercício 1:
Sejam M = 6,0.1024 kg e R = 6,4.106 m a massa e o raio da Terra. Uma pequena esfera de massa 10 kg está sobre a superfície da Terra. Qual é a intensidade da força de atração gravitacional que a Terra exerce na esfera? É dada a constante de gravitação universal: G = 6,67 x 10-11 N.m2/(kg)2

Resolução: clique aqui
x
Exercício 2:
A força de atração gravitacional, entre duas pequenas esferas de massas m e M, situadas a uma distância d, tem intensidade F. Reduzindo-se à metade a distância entre as esferas, a intensidade da força de atração gravitacional passa a ser F’. Determine a razão F’/F.
x
Resolução: clique aqui
x
Exercício 3:
Seja g = 10 m/s2 a intensidade da aceleração da gravidade na superfície da Terra, cujo raio é R. Num ponto situado à distância 2R do centro da Terra a aceleração da gravidade passa a ter intensidade:

a) 7,5 m/s2; b) 6,0 m/s2; c) 5,0 m/s2; d) 2,5 m/s2; e) 1,25 m/s2
x
Resolução: clique aqui
x
Exercício 4:
Um corpo situado na superfície terrestre pesa 80 N. Qual seria o peso desse corpo se fosse colocado na superfície de Urano? Sabe-se que a massa de Urano é 14,6 vezes a massa da Terra e que seu raio é 4 vezes o raio da Terra.
x
Resolução: clique aqui

Exercício 5:
Um planeta tem massa igual ao dobro da massa da Terra e raio igual à metade do  raio da Terra. Seja g a aceleração da gravidade na superfície da Terra. Determine, em função de g, a aceleração da gravidade g’ na superfície do planeta.
Resolução: clique aqui
Resolução: clique aqui

Exercício 6:
Dois satélites, A e B, estão emBórbita circular em torno da Terra. O raio da trajetória descrita por A é rA e o de B, é rB = 2.rA. Sejam vA e vB as velocidades de translação dos satélites e TA e TB seus períodos de translação. Determine as relações:
vA/vB e TA/TB?
x
Resolução: clique aqui

Exercícios de Revisão

Revisão/Ex 1:
(CESGRANRIO)
A força da atração gravitacional entre dois corpos celestes é proporcional ao inverso do quadrado da distância entre os dois corpos. Assim é que, quando a distância entre um cometa e o Sol diminui da metade, a força de atração exercida pelo Sol sobre o cometa: 

a) diminui da metade; 
b) é multiplicada por 2; 
c) é dividida por 4; 
d) é multiplicada por 4; 
e) permanece constante.

Resolução: clique aqui

Revisão/Ex 2:
(UEL-PR)
O planeta Vênus descreve uma trajetória praticamente circular de raio 1,0.1011 m ao redor do Sol. Sendo a massa de Vênus igual a 5,0.1024 kg e seu período de translação 224,7 dias (2,0.107 segundos), pode-se afirmar que a força exercida pelo Sol sobre Vênus é, em newtons, aproximadamente:

a) 5,0.1022.
b) 5,0.1020.
c) 2,5.1015.
d) 5,0.1013.
e) 2,5.1011.

Resolução: clique aqui

Revisão/Ex 3:
(Uesb-BA)
Um satélite, de massa m, realiza um movimento uniforme em órbita circular de raio R, em torno da Terra, considerada uma esfera de massa M. Sendo G a constante de gravitação universal, a energia cinética do satélite, nesse movimento, é igual a:

01) GM/R.
02) Gm/R.
03) Gm/2MR.
04) GM/2mR.
05) GmM/2R.

Resolução: clique aqui

Revisão/Ex 4:
(PUC-Campinas-SP)
Considere um planeta que tenha raio e massa duas vezes maiores que os da Terra. Sendo a aceleração da gravidade na superfície da Terra igual a 10 m/s2, na superfície daquele planeta ela vale, em m/s2.

a) 2,5.
b) 5,0.
c) 10.
d) 15.
e) 20.

Resolução: clique aqui

Revisão/Ex 5:
(UFES)
Suponha a Terra com a mesma massa porém com o dobro do raio. O nosso peso seria:

a) a metade.
b) o dobro.
c) o mesmo. 
d) o quádruplo.
e) reduzido à sua quarta parte.

Resolução: clique aqui
n
Desafio:

Três pequenas esferas, A, B e C, estão alinhadas conforme a figura. Suas massas são respectivamente 3m, 2m e m.


A força de atração gravitacional que A exerce em C tem intensidade F. A força de atração resultante da ação de A e B sobre C, tem intensidade:

a) F
b) 5F/3
c) 7F/3
d) 8F/3
e) 11F/3


A resolução será publicada na próxima segunda-feira.

Resolução do desafio anterior:


Admita a órbita da Lua, em torno da Terra, circular, de raio R (figura A) e com período de translação de 27,35 dias.


Imagine que a Lua parasse em sua órbita e caísse na Terra depois de um intervalo de tempo Δt. Para calcular este intervalo de tempo use a seguinte estratégia: considere que a velocidade da Lua reduzisse a um valor próximo de zero. Nestas condições, a Lua passaria a descrever uma órbita elíptica de eixo maior R e de excentricidade próxima de 1, terminando por colidir catastroficamente com a Terra (figura B). Adote 2 = 1,41



Nestas condições, o valor de
Δt é aproximadamente igual a:

a) 19,28 dias
b) 9,64 dias
c) 4,82 dias
d) 2,41 dias
e) 1,20 dias


Resolução:

De acordo com a terceira lei de Kepler, podemos escrever:

Situação da figura A:


T2 = K.R3 (1)

Situação hipotética da figura B:


(T’)2 = K.(R/2)3 => (T’)2 = K.R3/8 (2)

(2)/(1): 


(T’/T)2 = 1/8 => T’/T = 1/2√2 => T’= T/2√2 = 27,35dias/2√2 
                               
T’ = (27,35/4).
√2 dias

T’
9,64 dias

O intervalo de tempo Δt procurado é a metade do valor T’ encontrado:


Δt = T’/2 4,82 dias => Δt  4 dias e 20 h

Resposta: c

domingo, 29 de novembro de 2020

Arte do Blog

Mandolin-and-guitar-1924
Pablo Picasso

Pablo Diego José Francisco de Paula Juan Nepomuceno María de los Remedios Cipriano de la Santísima Trinidad Ruiz y Picasso, ou simplesmente Pablo Picasso, nasceu em Málaga, Espanha, em 25 de outubro de 1881. Artista de múltiplas habilidades foi pintor, escultor, desenhista, ceramista e poeta.

 Great-still-life-on-pedestal-1931

O talento de Picasso foi, de certa forma, herdado de seu pai, professor de desenho e eventualmente pintor, e não tardou a ser reconhecido logo no início, quando o artista tinha apenas quinze anos e, surpreendentemente, seu próprio ateliê. Na infância, reproduzia episódios de touradas, tema de sua primeira obra – O Toureiro -, uma pintura a óleo sobre madeira, executada quando o artista tinha oito anos. Mais tarde, inclusive, criou outra tela semelhante - A morte da mulher destacada e fútil, símbolo de sua relação com as mulheres. Aliás, na história de Picasso, seu envolvimento com as mulheres e sua produção artística estão intrinsecamente ligados, e a cada novo relacionamento ele começa a trilhar uma vereda artística renovada.


abstrato-507da

Picasso chegou a Paris em outubro de 1900, cidade que ele imediatamente adotou como seu novo lar, o núcleo de toda produção da vanguarda artístico-cultural. A princípio, ele seguiu caminhos convencionais, transitando da Fase Azul (1901-05), caracteristicamente melancólica, na qual ele aborda a cegueira, a pobreza, a alienação e o desespero, para a alegre e sensível Fase Rosa (1905), quando se apaixona por Fernande Olivier.

 Woman-b

Co-criador do Cubismo, ao lado de Georges Braque, no qual o visível era geometricamente desconstruído, o pintor deu um passo decisivo na instituição de uma nova crença, a de que o produtor artístico deve sempre adicionar algo novo ao real, e não meramente reproduzi-lo. A partir de então o artista é livre inclusive para escolher outros materiais que não os convencionais, complementando meios como a pintura e a escultura com colagens e outros artefatos.

 Painting-020

Picasso morreu em 8 de abril de 1973, na cidade de Mougins, na França, aos 91 anos, legando ao planeta uma vasta herança artística, cultural e existencial. 

Saiba mais aqui, aqui e aqui

sábado, 28 de novembro de 2020

Especial de Sábado

Premio Nobel de Física

Borges e Nicolau
x
1922
Niels Henrik David Bohr, "pelo estudo da estrutura dos átomos e da radiação por eles emitida".

iNiels Henrik David Bohr (1885-1962), físico dinamarquês
x
Niels Bohr, ao criar seu modelo atômico, explicou a maneira como os elétrons absorvem e emitem energia radiante. Para isso, utilizou a teoria quântica de Planck, segundo a qual a energia não seria emitida continuamente, mas em pequenos “pacotes”, cada um dos quais denominado quantum. Existiriam, de acordo com Bohr, níveis estáveis de energia, nos quais os elétrons não emitem radiação. A passagem de certo nível de energia para outro nível superior seria possível desde que o elétron absorvesse energia do meio externo, numa quantidade bem definida para isso. Quando retornasse ao nível inicial, o elétron devolveria, na forma de radiação, exatamente a quantidade de energia antes absorvida. Pelo estudo da estrutura do átomo e da radiação por ele emitida, Bohr foi distinguido com o premio Nobel de Física, em 1922.
(Fonte: Os fundamentos da Física, Volume 3)


Saiba mais. Clique aqui

quinta-feira, 26 de novembro de 2020

Caiu no vestibular

Quatro pássaros nos fios

AFA
A figura abaixo mostra quatro passarinhos pousados em um circuito elétrico ligado a uma fonte de tensão, composto de fios ideais e cinco lâmpadas idênticas L.




Ao ligar a chave Ch, o(s) passarinho(s) pelo(s) qual(quais) certamente não passará(ão) corrente elétrica é(são) o(s) indicado(s) pelo(s) número(s)


a) I  
b) II e IV  
c) II, III e IV  
d) III

 
Resolução:


O pássaros II está com suas patas sobre um mesmo fio (considerado ideal), não estando sujeito a uma ddp. O mesmo ocorre com o pássaro IV. 


Já o pássaro I será atravessado por corrente elétrica pois entre suas patas existe uma ddp.

O circuito é uma ponte de Wheatstone.

Note que se não existissem os pássaros a ponte estaria em equilíbrio. 

Entretanto, o pássaro I desequilibra a ponte e o pássaro III ficará submetido a uma ddp e será atravessado por corrente elétrica.

Resposta: b

quarta-feira, 25 de novembro de 2020

Cursos do Blog - Eletricidade


Três possíveis saltos quânticos de um elétron no átomo de hidrogênio

38ª aula
O átomo de Bohr

Borges e Nicolau

Introdução:

A partir de alguns experimentos, Ernest Rutherford, no início do século XX, propôs um modelo para o átomo. Uma nuvem de elétrons carregados negativamente circundando o denso núcleo, carregado positivamente.

Uma concepção planetária onde o núcleo seria o Sol e os elétrons, girando em órbita do núcleo, os planetas.

Um problema teórico colocou em dúvida esse modelo. Estando carregado eletricamente e acelerado (aceleração centrípeta) o elétron deveria emitir energia na forma de ondas eletromagnéticas. Com isso acabaria aproximando-se do núcleo até chocar-se com ele.

Embora previsto teoricamente o colapso não acontece o que fez com que o físico dinamarquês Niels Bohr elaborasse uma teoria para solucionar o problema atômico.

A proposta:

Ao criar seu modelo atômico Bohr utilizou a idéia de Planck, segundo a qual a energia não seria emitida continuamente, mas em pequenos “pacotes”, cada um dos quais denominados quantum. Existiriam níveis estáveis de energia denominados estados estacionários nos quais os elétrons não emitiriam radiação.

A passagem do elétron de um estado estacionário para outro é possível mediante a absorção ou liberação de energia pelo átomo. A energia do fóton absorvido ou liberado corresponde à diferença entre as energias dos níveis envolvidos. Ao passar de um estado estacionário de energia E para outro de energia E’, considerando E’x>xE, teremos:


onde h é a constante de Planck e f a frequência do fóton absorvido.

Os raios das órbitas permitidas para o átomo de hidrogênio são dadas por:

(n = 1, 2, 3, 4,...)

onde rB = 0,53 Å é denominado raio de Bohr e corresponde ao menor raio, relativo ao estado estacionário fundamental (n = 1).

A energia mecânica total En do elétron no enésimo estado estacionário, para o átomo de hidrogênio é, em elétron-volt, dada por:


Na figura representamos os níveis de energia de um elétron num átomo de hidrogênio:
Clique para ampliar
Exercícios básicos
Exercício 1:
O elétron do átomo de hidrogênio ao absorver um fóton passa do estado fundamental (n = 1) para o primeiro estado estacionário excitado (n = 2).
Sendo h = 4,14.10-15 eV.s a constante de Planck, determine:

a) a energia absorvida nessa transição;

b) a frequência do fóton absorvido.

Resolução: clique aqui

Exercício 2:
A figura abaixo mostra os níveis de energia do átomo de hidrogênio. Na transição do nível 4 para o nível 1, determine a frequência e o comprimento de onda do fóton emitido.

Dados:
Constante de Planck h = 4,14.10-15 eV.s
Velocidade de propagação da luz c = 3,0.108 m/s

Clique para ampliar

Resolução: clique aqui

Exercício 3:
(UFMG) A figura mostra, esquematicamente, os níveis de energia permitidos para elétrons de um certo elemento químico. Quando esse elemento emite radiação, são observados três comprimentos de onda diferentes, λa, λb, λc.

Clique para ampliar

a) com base na figura, explique a origem da radiação correspondente aos comprimentos de onda λa, λb e λc.

b) considere que λaλbλc. Sendo h a constante de Planck e c a velocidade da luz, determine uma expressão para o comprimento de onda λa.

Resolução: clique aqui

Exercícios de Revisão

Revisão/Ex 1:
(ITA–SP)
O diagrama mostra os níveis de energia (n) de um elétron em um certo átomo. Qual das transições mostradas na figura representa a emissão de um fóton com o menor comprimento de onda?



a) I b) II   c) III    d) IV   e) V

Resolução: clique aqui

Revisão/Ex 2:
(UFPE)
De acordo com o modelo de Bohr, os níveis de energia do átomo de hidrogênio são dados por En = -13,6/n2, em eV. Qual a energia, em eV, de um fóton emitido quando o átomo efetua uma transição entre os estados com n = 2 e n = 1?

a) 13,6
b) 10,2
c) 5,6
d) 3,4
e) 1,6

Resolução: clique aqui

Revisão/Ex 3:
(AFA-SP)
O elétron do átomo de hidrogênio, ao passar do primeiro estado estacionário excitado, n = 2 para o estado fundamental n = 1, emite um fóton.
Tendo em vista o diagrama da figura abaixo, que apresenta, de maneira aproximada, os comprimentos de onda das diversas radiações, componentes do espectro eletromagnético, pode-se concluir que o comprimento de onda desse fóton emitido corresponde a uma radiação na região do(s)



a) raios gama
b) raios X
c) ultravioleta
d) infravermelho

Resolução: clique aqui
n
Desafio:

De acordo com o modelo de Bohr, os níveis de energia do átomo de hidrogênio são dados por En = -13,6/n2, em eV.


a) Qual é a energia associada a cada nível de energia representado no esquema: n
x=x1 (estado fundamental); n = 2 (1º estado excitado); n = 3 (2º estado excitado); nx=x4; n = 5; n = 6; n → ∞ (o átomo está ionizado, isto é, o elétron foi removido do átomo).
 

b) Em que transições apresentadas no esquema, o elétron absorve energia?
 

c) Das transições indicadas, calcule a de maior frequência que pode ser  emitida.
d) Qual é a mínima energia necessária para ionizar o átomo a partir do estado fundamental?


Dado: h = 4,14.1
0-15 eV.s é a constante de Planck

A resolução será publicada na próxima quarta-feira.

Resolução do desafio anterior:

Calcule o comprimento de onda de de Broglie nas duas situações descritas abaixo:

a) para um elétron, deslocando-se com velocidade 40 m/s.


b) para uma pessoa de massa 60 kg, deslocando-se com velocidade 40 m/s.


c) em vista dos resultados obtidos, explique por que não podemos observar efeitos ondulatórios para objetos em escala macroscópica.
 

Dados: 
constante de Planck: h = 6,63.10-34 J.s; 
massa do elétron: me = 9,1.10-31 kg.


Resolução:

a) λ
e = h/(m.v) => λe = 6,63.10-34 /(9,1.10-31.40) => λe 1,8.10-5 m

b)
λp = h/(m.v) => λp = 6,63.10-34 /(60.40) => λp 2,8.10-36 m

c) O comprimento de onda associado à pessoa é muito menor do que qualquer abertura pela qual ela pudesse passar. Isso explica por que não podemos observar efeitos ondulatórios para objetos em escala macroscópica.